
Institute for Advanced Studies

in asic Sciences

Gava Zang, anjan, Iran

Institute for Advanced Studies in Basic Sciences

Department of Computer Science and Information Technology

Partial Packet Recovery for Network Coding

Master of Science

in

Computer Science (Artificial Intelligence)

Hosein K. Nazari

Supervisor:

Dr. Peyman Pahlevani

August, 2021

Abstract

Emerging applications demand more reliability and lower latency than ever before. However,

improving reliability, particularly for noisy wireless communication, remains a challenging task.

During transmission of packets over a noisy communication channel, some of them might partially

corrupt. These packets are referred to as partial packets.

In early 2000, network coding has emerged as a compelling solution to improve resource utilization

and reliability. Originally, network coding discards partial packets, which is not an efficient strategy.

The main reason is that a significant portion of partial packets contains error-free and valuable

information. Several partial packet recovery solutions have been suggested as complementary strategies

to exploit partial packets. However, they suffer from high computational complexity and long

decoding delay.

In this study, we propose two partial packet recovery techniques for noisy wireless communications.

First, we introduce F-PRNC, a partial packet recovery technique that focuses on enhancing packet

recovery speed. Alongside the complexity analysis, we carried out extensive simulations and compared

F-PRNC with state-of-the-art solutions. In severely noisy situations, the simulation findings show

that F-PRNC can boost goodput more than four times and minimize decoding delay by 4.5 times.

Also, we have proposed Fly-PRAC with a focus on reducing the estimation and decoding delay.

This method is the first partial packet recovery technique that enables the recovery process at

intermediate nodes. Simulation shows that Fly-PRAC reduces completion time by 16 percent and

increases goodput up to 3.8 times in highly noisy communication channels. It is also helpful for

sparse network coding based communications, as it reduces average decoding delay by 47 percent,

making it more suitable for a range of real-time applications.

Keywords: partial packet recovery, random linear network coding, network coding.

Contents

1 Introduction 1

1.1 Reliable comunication in a noisy wireless channel . 1

1.2 Network Coding . 3

1.2.1 Linear Network Coding . 3

1.2.2 Packet Recovery for Linear Network Coding 4

1.3 Problem statement . 5

1.4 Contribution . 6

1.5 Thesis Structure . 8

2 Background and Related Work 9

2.1 Introduction . 9

2.2 Background . 10

2.2.1 Network Coding Implementations . 10

2.2.1.1 RLNC . 12

2.2.1.2 SNC . 13

2.2.2 Modeling a Noisy Channel . 14

2.3 Related works . 15

2.3.1 FEC and ARQ . 15

2.3.2 Spatial Diversity . 16

2.3.3 Partial Packet Recovery . 17

2.3.3.1 PPR-CS . 18

2.3.3.2 PRAC . 19

2.3.3.3 DAPRAC . 21

2.3.3.4 S-PRAC . 23

2.4 Conclusion . 26

3 Proposed methods 27

3.1 Introduction . 27

3.2 F-PRNC . 27

3.2.1 Encoding . 28

3.2.2 Recovery & Decoding Process . 29

3.2.2.1 Limited recovery . 29

3.2.2.2 Algebraic consistency rule . 31

3.2.2.3 Hinted recovery . 32

3.3 Fly-PRAC . 32

3.3.1 Fly-PRAC For RLNC . 32

3.3.1.1 Encoding . 32

3.3.1.2 Recovery . 35

3.3.1.2.1 Error Estimation Step . 35

3.3.1.2.2 Error Correction Step . 38

3.3.1.3 Decoding . 38

3.3.2 Fly-PRAC for Relay nodes . 39

3.3.3 Fly-PRAC for Sparse network coding . 41

3.3.3.1 Encoding . 42

3.3.3.2 Recovery and Decoding . 42

4 Analysis 45

4.1 Introduction . 45

4.2 F-PRNC . 45

4.2.1 Limited Recovery Phase . 46

4.2.2 Hinted Recovery Phase . 47

4.2.3 Complexity of RLNC and ACR . 49

4.3 Fly-PRAC . 49

4.3.1 False Positive in correction phase . 50

4.3.2 Impact of R on the recovery process . 54

5 Simulation Results 60

5.1 Introduction . 60

5.2 F-PRNC . 61

5.2.1 Experiment Setup . 61

5.2.2 Comparison of F-PRNC with DAPRAC and S-PRAC 61

5.3 Fly-PRAC . 63

5.3.1 Experiment Setups . 64

5.3.2 Impact of Generation and Payload size on Packet Recovery 64

5.3.3 Impact of enabling recovery at intermediate nodes 66

5.3.4 Comparison of packet recovery for SNC communication 67

5.3.5 Recoverability and Overhead Comparison . 68

6 Conclusion and Future work 70

Bibliography 73

List of Figures

1.1 Comparison of network coding and store-and-forward scheme; network coding allows

intermediate nodes to recode packets without decoding them first. 3

2.1 Network coding helps to increase the throughput gain in the “Butterfly Network” . . 10

2.2 Categorization of network coding implementations. 11

2.3 Examples of single-bit and burst error in a packet. 14

2.4 Binary erasure and binary symmetric channels. 15

2.5 Categorization of reliability methods. 15

2.6 An example of automatic repeat request method. 16

2.7 An example of multi-input multi-output transmissions using 6 antennas. 17

2.8 Classification of partial packet recovery methods for network coding communications. 18

2.9 Estimation and correction process of PRAC. 19

2.10 Error estimation process of DAPRAC. Image from [1]. 22

2.11 Correction process of DAPRAC. Image from [1]. 23

2.12 Estimation and correction process of S-PRAC. 23

2.13 The procedure of diving the data (100100) by the CRC divisor to compute the

remainder of division. 24

2.14 (a) The remainder of the error-free version of data is zero; (b) the remainder of

erroneous data is not zero; (c) an example of false-positive events in CRC checks

when the remainder of erroneous data is zero. 25

3.1 The required permutations of 𝑉 to recover packets containing up to 2 corrupted

symbols, where 𝑙 = 2 and 𝑅′ = 3. 30

3.2 Packet format after encoding process. 34

3.3 Percentage of partial packets after passing through a different number of relays, where

the size of the coded symbol is 1000 bytes. 40

3.4 In (A) the relay node (R) works in a store-and-forward mode and transmits partial

packets; In (B) relay node (R) recovers the packet and then transmits a recoded

packet using received and recovered ones. 40

4.1 The probability of successful recovery of a segment (𝑃 ′𝑠𝑟) for CRC 0xe7 and different

BERs. 54

4.2 The comparison of expected number of inconsistent column for different 𝑅 (colored)

with ACR (Black) in a channel with BER of 𝜖 where 𝑔 = 100, 𝑙 = 50, and field size

is 𝐺𝐹 (28) . 55

4.3 For a segment containing 4 symbols and 𝑔 = 8; for Fly-PRAC with (A) 𝑅 = 9 and

(B) 𝑅 = 5. 56

4.4 The comparison of expected number of false positive events between the ACR (Black)

and the proposed error locations’ estimation process (colored) for a channel with BER

of 𝜖 where 𝑔 = 100, 𝑙 = 50, and field size is 𝐺𝐹 (28). 59

5.1 The comparison of F-PRNC (with𝑅′ redundancy symbols), S-PRAC (with 𝑠 segments)

and DAPRAC, on a log-normal scale, where the payload size is 8 bytes and ByER is

0.1. 62

5.2 Impact of error rates and payload size on goodput for SPRAC and Fly-PRAC with 4

segments and 𝑔 = 100. 64

5.3 Completion time comparison between Fly-PRAC and S-PRAC where BER= 5𝑒 − 5

and segment size = 4 and payload size is 800 bytes. 65

5.4 Completion time comparison between Fly-PRAC and S-PRAC where 𝑠 = 4, BER=

5𝑒− 5 and 𝑔 = 100. 66

List of Tables

5.1 The comparison of F-PRNC (with𝑅′ redundancy symbols), S-PRAC (with 𝑠 segments),

and DAPRAC in terms of retransmission delay (RD) and decoding delay (DD) in

milliseconds, where the ByER is 0.14. 63

5.2 The comparison of Fly-PRAC and S-PRAC, in terms of Completion Time (CT) and

the average sent packets to decode a generation. Both methods using four segments

and communicating through a relay where channels have BER of 𝜖. 67

5.3 The comparison of Fly-PRAC (with R=5), S-PRAC and No PPR in terms of ADD

and average required packet to decode a generation of 100 packets and payload size

of 800 bytes. 68

5.4 The comparison of Fly-PRAC and S-PRAC, with segment size 4 and BER = 5e-5. . 69

Chapter 1

Introduction

In this chapter, we state the importance of reliable communication in a noisy wireless channel.

Then, we briefly introduce network coding and packet recovery techniques to combat issues caused

by noise. Finally, we outline the motivation of this study and present our contribution.

1.1 Reliable comunication in a noisy wireless channel

Wireless communication has been expanding at an astonishing rate over the last few decades. This

type of communication provides more flexibility and has a broader range of applications compared

to wired communications.

There are different categories and applications of wireless communications. For instance, short-

range communications such as Bluetooth [2], ZigBee[3], and Wi-Fi provide different data rates and

are used in machine-to-machine (M2M) communications or to build personal area networks [4]. The

medium-range cellular network such as 4G/LTE and 5G are used to provide internet access for

roughly 4 billion devices across the world [5]. Also, low-power wide-area networks (LPWAN) are

1

using wireless transmitting techniques such as Sigfox, LoRa, and NB-IoT to connect millions of

internet of thing (IoT) devices [6].

These vast number of applications of wireless communication have different and sometimes

conflicting requirements. One of the most wanted requirements is to provide reliable communication.

A communication channel is reliable if it delivers a set of packets ordered, without any losses or

duplicates [7]. Each channel, regarding its characteristics, has a certain capacity. The capacity of a

channel indicates a tight upper bound on the maximum rate at which data is transmitted reliably.

Due to the faulty nature of wireless communication channels, packets can corrupt during transmission.

There are several reasons for this, such as signal authentication, signal congestion, or multi-path

propagation [8]. These problems can degrade the capacity and reduce the performance of a communication

channel.

Maintaining reliable communication has always been a hot spot in the field of computer networks

for a long period, and it remains a challenging task. Conventionally, techniques used to increase

reliability for a communication channel falls into two main categories: active retransmission and

passive channel coding. In active retransmission methods such as automatic repeat request (ARQ),

the receiver discards corrupted packets and issues a retransmission request. In passive channel

coding, also known as the forward error correction (FEC), the encoder adds redundant information

to each packet and then use that to recover corrupted part of the packets. The ARQ is not suitable

for very noisy environments or broadcast scenarios, and FEC has limited correction capabilities and

only performs well within a specific range of the Signal-to-noise ratio(SNR) [9] [10].

2

1.2 Network Coding

In [11], Ahlswede et al. propose a novel concept called Network Coding (NC) that has arisen

as a possible solution to resource utilization and gaining higher reliability [12][13][14]. NC is also

beneficial for storage area networks, peer-to-peer file sharing, multicast streaming, and wireless mesh

networks [15][16].

Store-and-Forward

Legacy Scheme

Relay

b

a
a

Coding at Intermediate Node

Network Coding

Relay

b

a
a ⓧ b

Figure 1.1: Comparison of network coding and store-and-forward scheme; network coding allows
intermediate nodes to recode packets without decoding them first.

Figure 1.1 shows this networking technique allows the intermediate nodes to mitigate the value of

packets. In the old-fashioned communications, i.e., store and forward method, the received packets

are cached and then transmitted to the next node.

1.2.1 Linear Network Coding

Here [17], Ho et al. introduced RLNC, a novel random strategy for decentralized NC. In RLNC,

each data block is divided into a group of 𝑔 source packets called generation. On the sender side,

𝑛 coded packets are generated by linearly combining source packets where 𝑛 ≥ 𝑔. Once 𝑔 linearly

independent coded packets are received, the decoding process begins on the receiver side.

Using RLNC increases the loss-resilience of communication; however, its major drawback is the

3

high complexity of the decoding process, which is 𝑂(𝑔3). Also, it starts decoding only after receiving

𝑔 linearly independent packets causing a considerable decoding latency. These are two main barriers

of this approach [18][19]. SNC has been introduced to address these issues and reduce the decoding

complexity by using fewer source packets to form a coded packet [19] [20]. It is best suited for real-

time applications requiring a low decoding delay. However, using fewer source packets in forming

coded packets result in a dramatic increase in transmission overhead [21][22].

1.2.2 Packet Recovery for Linear Network Coding

In NC, the integrity of received packets is checked using an error detection code such as a cyclic

redundancy check (CRC). If any packet contains corrupted information, the CRC refutes its integrity.

Here we refer to it as a partial packet.

Originally in RLNC and SNC, partial packets are discarded. In [23], it is shown roughly 55%

of packets in IEEE 802.11a/b/g are partial. Also, in [24], authors demonstrate that up to 95% of

a partial packet consists of useful and error-free information. Therefore, discarding them results

in poor bandwidth utilization. In this regard, to achieve higher reliability and throughput, partial

packet recovery. (PPR) techniques are employed as a complementary strategy.

There are several PPR methods for NC communications. These methods aim to recover partial

packets and avoid more re-transmission. Also, these methods generally consist of two steps, namely,

estimation and correction. In the estimation step, the majority of PPR techniques for NC, such

as [25] [1], use a method called algebraic consistency rule (ACR) checks. ACR benefits from the

algebraic relation between coded packets in NC and estimates error locations for received packets.

The PPR uses the reported locations and attempts to recover them during the correction step.

4

For this purpose, it modifies the information in the reported locations multiple times. After

each modification, it checks the integrity of information in the reported locations using a checking

mechanism. This checking mechanism is either ACR or CRC check. The process of modification

and checking continues until the checking mechanism verifies the integrity of the information.

1.3 Problem statement

PPR methods for NC can help to reduce the number of required re-transmissions and take advantage

of partial packets. However, these methods are only considered point-to-point communications where

only one sender and a receiver communicate directly. Therefore, in more realistic scenarios with

intermediate nodes, only the receiver can recover packets. As previously stated, one of the primary

advantages of NC over other coding systems is the ability to recode packets at the intermediate

node. In more realistic settings with numerous relays, partial packets cannot be used in the recoding

process, which negatively influences the entire process and reduces throughput.

Furthermore, the estimation and correction process only begins after receiving 𝑔 + 1 packets

causing a significant delay in the decoding process. Also, the correction process is responsible for

a significant portion of time spent on the recovery process, which grows dramatically when the

error rate, the number of source packets, or the size of the packets increases. As a result, they are

impractical in a range of situations.

Additionally, there is a risk of false-positive events in the estimation and correction processes,

where they may incorrectly verify an erroneous block of information or cause a failure in the recovery

process.

5

1.4 Contribution

The main contribution of the present study is proposing two PPR methods for NC communication,

namely fast packet recovery for network coding (F-PRNC) and Fly-PRAC.

The F-PRNC [26] aims to reduce the recovery time and increase goodput in highly noisy

environments. F-PRNC appends redundancy symbols to each coded packet, which allows it to begin

the recovery process only after receiving the first partial packets. When a sufficient number of packets

arrive, F-PRNC employs ACR to estimate error locations and attempts to recover the remaining

unrecovered packets. Alongside the analytical complexity analysis of the decoding process, we have

carried out extensive simulation and compared the F-PRNC with the two latest PPR schemes for

NC, DAPRAC [1] and S-PRAC [27]. We show that F-PRNC exceeds those methods in terms of

goodput in a variety of settings. Also, simulation reveals that F-PRNC for highly noisy channels

with byte error rate 0.14 has dramatically lower retransmission and decoding delay.

Fly-PRAC is another PPR scheme that considers more realistic communications. This method

allows intermediate nodes to recover partial packets and use recovered ones in the re-coding process.

This feature permits communication to utilize NC benefits fully. In Fly-PRAC, the transmitter

sends several intentionally linearly dependent packets and uses them in the estimation and correction

process. Fly-PRAC, in addition to RLNC, performs well in SNC. It takes advantage of redundant

packets in SNC to recover partial packets, reduce total transmissions, and decrease average decoding

delay.

We also propose a new estimation technique based on algebraic consistency among packets.

Unlike ACR, which requires at least 𝑔 + 1 packets to begin estimating, the proposed approach

6

requires a smaller set of 𝑅 packets. This technique allows us to begin estimation and correction

steps much earlier and reduce decoding delay. It also helps to provide a more precise estimation of

error locations which boosts the correction phase. We also demonstrated proposed method lowers

the probability of false-positive events. As a result, Fly-PRAC recovers more partial packets and

reduces transmission overhead.

We have conducted extensive simulations on Fly-PRAC’s performance and compared it with

the S-PRAC in various conditions. The results illustrate that Fly-PRAC dramatically enhances

communication efficiency in poor channel conditions. For instance, in a point-to-point RLNC

communication, for a bit error rate of 5 × 10−5, the completion time can be decreased up to 4.7

times. Also, it illustrates that for large payload sizes such as 900 bytes, the proposed method can

increase the goodput up to 3.8 times. Further, for a large number of source packets such as 200

bytes, results demonstrate that it recovers more packets and requires 21% fewer packets to decode

all source packets. Additionally, in an SNC communication and a bit error rate of 10−4, results

show employing Fly-PRAC leads to a reduction of up to 47% in average decoding delay. Lastly,

it is shown that enabling packet recovery at intermediate nodes boost the performance, and for a

channel with a bit error rate of 10−4, this can reduce the total transmission up to 16%.

* As an outcome of this study, we published a paper entitled “Improving the Decoding Speed

of Packet Recovery in Network Coding” in the IEEE Communications Letters journal. We also

submitted a paper entitled “Fly-PRAC: Partial Packet Recovery for Linear Coded Transmission” for

review.

7

1.5 Thesis Structure

The remainder of this thesis is structured as follows. The second chapter goes through the basics of

network coding, random linear network coding, and sparse network coding. We also briefly review

some background information about noises in wireless communications. The third chapter presents

two partial packet recovery techniques for network coding and describes their encoding, recovery,

and decoding procedures. In chapter 4, we have the analysis section. Then, we report the outcome

obtained by simulation results and compare proposed methods with the most relevant PPR schemes

in the fifth chapter. Finally, in chapter 6, we first conclude this study and then discuss potential

improvements that will be addressed in future research.

8

Chapter 2

Background and Related Work

2.1 Introduction

In this chapter, we first review some background information about NC and its different implementations.

Following that, we go through the RLNC in-depth, explaining its encoding and decoding procedures.

Afterward, we discuss SNC and highlight its main differences with RLNC. Further, we discuss noises

in communication channels, their different types, and mathematical models. In the related work

section, we briefly discuss traditional methods of coping with errors in communication channels.

Then we look at different types of PPR before looking deeper into PPR schemes for NC communications

and discussing their benefits and drawbacks.

9

1 2

5 6

3

4

A B

A+BA

A

B

B

A+B

B
A+B

A
A+B

Figure 2.1: Network coding helps to increase the throughput gain in the “Butterfly Network”

2.2 Background

2.2.1 Network Coding Implementations

Network coding [11] is a unique concept that has emerged as a potential solution to resource

utilization and higher reliability. The NC concept entails combining and re-transmitting a combination

of packets at the network’s source and intermediate nodes. This type of communication has proven

to be more resilient to packet losses and more adaptable to network changes [15][16].

Figure 2.1 depicts the butterfly network. It shows a network of six nodes, nodes 1 and 2 serving

as a source, nodes 3 and 4 serving as a relay, and nodes 5 and 6 are sink nodes. Furthermore,

each edge represents a communication channel that transmits one packet in a time slot. Each source

node transmits a message, and two sink nodes must receive both messages. Once node 3 receives

both messages A and B in a time slot, instead of forwarding them in two time-slots, encodes them

by adding them together and retransmits the resulting packet to the downstream node. No routing

10

technique could achieve such efficiency if the relay node 3 could carry either A or B. The sink nodes

5 and 6 directly receive A and B from side edges. Next, by receiving the encoded packet A+B from

the intermediate node 4, they can obtain the other message with a simple operation. It can be

observed that NC greatly improves the throughput and power efficiency due to the fewer time slots

needed for transmitting the same amount of information.

Network Coding

Physical
Layer

Network
Coding

Binary
Coding -

XOR

Analog
Network
Coding

Linear
Network
Coding

Sparse Linear
Network Coding

Random Linear
Network Coding

Deterministic
Linear Network

Coding

Figure 2.2: Categorization of network coding implementations.

There are numerous methods for performing NC depending on the operation used to combine

packets and the network layer in which this operation occurs. In [28], they divided them into

four different categories namely physical layer network coding [29], analog network coding [30],

binary coding-XOR [31], and linear network coding. The linear network coding also contains three

subcategories. These categories are random linear network coding (RLNC)[32], sparse linear network

coding (SNC)[19], and deterministic linear network coding [33].

11

2.2.1.1 RLNC

Here [17], Ho et al. introduced RLNC, a novel random strategy for decentralized network coding.

RLNC divides data block into 𝑔 source packets {𝑝1, 𝑝2, ..., 𝑝𝑔} called a generation. Each 𝑝𝑖 contains

𝑙 symbols {𝑠1, 𝑠2, ..., 𝑠𝑙}. All symbols are elements of a finite field 𝐺𝐹 (2𝑞).

For each coded packet, there is an associated coefficient vector. Let 𝑐𝑖 = {𝑐𝑖,1, 𝑐𝑖,2, ..., 𝑐𝑖,𝑔}

denoted a coefficient vector that is associated with the i-th coded packets (𝑝′𝑖). All elements of

coefficient vectors are also selected randomly and independently from a finite field 𝐺𝐹 (2𝑞). The

encoder constitutes two matrices; one containing packet and another containing coefficient vectors

and uses Eq. 2.1 to form coded packets.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝′1

𝑝′2

...

𝑝′𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1,1 𝑐1,2 · · · 𝑐1,𝑔

𝑐2,1 𝑐2,2 · · · 𝑐2,𝑔

...
...

. . .
...

𝑐𝑛,1 𝑐𝑛,2 · · · 𝑐𝑛,𝑔

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠1,1 𝑠1,2 · · · 𝑠1,𝑙

𝑠2,1 𝑠2,2 · · · 𝑠2,𝑙

...
...

. . .
...

𝑠𝑔,1 𝑠𝑔,2 · · · 𝑠𝑔,𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.1)

Each coded packet contains 𝑔 coded symbols. Let 𝑠′𝑖,𝑗 refer to the j-th coded symbol of i-th coded

packets. The receiving node needs to receive at least 𝑔 linearly independent coded packets. Once a

sufficient number of packets are received, the decoding process begins. Received packets and their

associated coefficient vectors are used to form a matrix denoted by 𝑀 . The matrix 𝑀 also can be

seen as a set of equations, with 𝑔 unknowns.

12

𝑀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1,1 𝑐1,2 · · · 𝑐1,𝑔 𝑠′1,1 𝑠′1,2 · · · 𝑠′1,𝑔

𝑐2,1 𝑐2,2 · · · 𝑐2,𝑔 𝑠′2,1 𝑠′2,2 · · · 𝑠′2,𝑔

...
. . .

. . .
...

...
...

. . .
...

𝑐𝑛,1 𝑐𝑛,2 · · · 𝑐𝑛,𝑔 𝑠′𝑛,1 𝑠′𝑛,2 · · · 𝑠′𝑛,𝑔

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.2)

where 𝑛 shows the number of received packets. The decoding algorithm is essentially a step-by-

step Gaussian elimination [34] over the finite field. The Gaussian elimination algorithm performs

over matrix 𝑀 to obtain the row echelon form and retrieve source packets. This process has a

computational complexity of 𝑂(𝑔3).

𝑀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 𝑠1,1 𝑠1,2 · · · 𝑠1,𝑔

0 1 · · · 0 𝑠2,1 𝑠2,2 · · · 𝑠2,𝑔

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 𝑠𝑛,1 𝑠𝑛,2 · · · 𝑠𝑛,𝑔

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.3)

2.2.1.2 SNC

SNC has been introduced to address the high computational complexity of the decoding process in

RLNC. In the encoding process, the encoder selects the coefficient vectors sparsely. In SNC, each

coded packet associates with a coding vector that contains only 𝑤 non-zero elements that are selected

randomly and independently from a finite field 𝐺𝐹 (2𝑞). SNC is best suited for real-time applications

requiring a low decoding delay. However, the major disadvantage of SNC is its transmission overhead.

Since the 𝑤 non-zero elements are selected randomly, and the coefficient vector is sparse, fewer source

13

packets are combined in a coded packet. As a result, some of the received coded packets may contain

information from source packets that have already been decoded on the decoder side. As we decrease

𝑤, the transmission overhead gets more dramatic [35].

2.2.2 Modeling a Noisy Channel

Due to the faulty nature of communication channels, packets can corrupt during transmission. This

is more common with wireless communications, and there are several reasons for it, such as signal

authentication, signal congestion, or multi-path propagation. The main types of errors are single-bit

and burst errors. In single-bit errors, only one bit changes for a given data unit. This type of error

is least likely since the duration of noise is generally longer than the duration of transferring only

one bit.

On the other hand, burst errors generally are more likely to happen, and it refers to more than

one-bit corruption for a given data unit such as a packet, a byte, and a character.

Single Bit Error

Burst Error

1 1 1 0 1 1 1 1 Checksum

1 1 0 1 1 1 1

Burst Error Size: 6

 Checksum1

Corrupted Bit Error-free Bit

Figure 2.3: Examples of single-bit and burst error in a packet.

Noisy channels can be modeled in several ways. Here we mention two of them, binary symmetric

channel (BSC) and binary erasure channel (BEC). In the case of sending only one bit in BCS, the

bit is preserved with the probability of 1− 𝑝, and there is a chance of negation with the probability

14

0

1 - p

e
p

p

1 - p 1

1

0

1 - p

p

p

1 - p

0

1

10

Binary Erasure Channel Binary Symmetric Channel

Figure 2.4: Binary erasure and binary symmetric channels.

of 𝑝. In BEC, the channel either preserves input with the probability of 1− 𝑝 or erases it with the

probability of 𝑝. In this study, we consider the former model as a base for our study.

2.3 Related works

Automatic Repeat
Request (ARQ)

Forward Error
Correction (FEC)

Spatial Diversity
(E.g., MIMO channels)

Partial Packet
Recovery

Hybrid Methods

Physical Layer
Dependent Approach

Physical Layer Independent
Approach

Network Coding Based
Approaches

Figure 2.5: Categorization of reliability methods.

2.3.1 FEC and ARQ

Traditionally, FEC and ARQ are widely being used to combat the erroneous channel’s challenges

and provide higher reliability. FEC appends a constant overhead to packets and provides limited

15

correction capabilities. Due to fast-varying and unstable channel quality in wireless networks, it is

necessary to consider the worst-case scenario to achieve high reliability. This eventually leads to

inefficient utilization of network resources. Moreover, acknowledgment packets can provide reliability

in some conditions, although it seems impractical in poor channel conditions and broadcast scenarios.

Ti
m

eo
ut

Packet 1

ACK 1

Packet Loss

Packet 2

Packet 2

Time Time

Figure 2.6: An example of automatic repeat request method.

Hybrid-ARQ exploits both FEC and ARQ to propose a more flexible method that performs

better than ARQ. In Hybrid-ARQ, before transmission of each packet, FEC and error-detecting

codes are appended to reduce the number of needed re-transmissions. However, in good channel

conditions, the overhead relating to the appended data degrades the throughput.

2.3.2 Spatial Diversity

Spatial diversity suggests dedicating more than one antenna to each node in a wireless network. This

way, nodes can send or receive parallel streams of redundant information and use this different version

of received data in the correction process. For instance, multiple-input multiple-output (MIMO) is

an implementation of spatial diversity. In some cases, one receiver may employ two antennas for

receiving a parallel stream of information from different paths. It compares the strength of received

16

TX RX

Figure 2.7: An example of multi-input multi-output transmissions using 6 antennas.

signals and chooses the stronger one. As it is unlikely that both paths degrade simultaneously,

this technique helps achieve higher reliability at the expense of more hardware requirements and

receiving unnecessary, redundant information in good channel conditions.

2.3.3 Partial Packet Recovery

Partial packet recovery (PPR) was first proposed in [36]. The main challenge of any PPR approach

is the detection of error locations. A new architecture called SOFT for the physical layer is

introduced in [37], which conveys a measure of confidence for each received bit. In [38], a link-layer

retransmission protocol called PP-ARQ is introduced. In PP-ARQ, the receiver can determine which

part of the packet is received correctly using acknowledgments and only requests the retransmission of

the corrupted parts. In segment-based PPR approaches [39][40], the packet is divided into segments,

and the receiver requests the retransmission just for the corrupted segments.

A range of techniques utilizes cross-layer information. For instance, approaches based on soft-

decoding use a confidence measure provided by the physical layer to estimate the location of

erroneous bits. These measurements are sent to higher layers, where the receiver issues a request to

re-transmit those bits. Besides its advantages, since passing such information violates the current

layered network protocols and standards, it also requires modification at the hardware level [41].

17

Moreover, a variety of packet recovery methods are proposed specifically for NC. In figure 2.8, we

have classified them into two different groups based on techniques used to detect corrupted parts of

a partial packet. Both groups rely on linear relations between coded packets to estimate corrupted

parts of a packet and do not require hardware modification. In the following, we briefly review them.

Network Coding Based Approaches

Estimation using Data Techniques
Compress Sensing and Sparse Recovery

Estimation using the Algebraic consistency
Between coded packets

PRAC
(2014)

DAPRAC
(2017)

S-PRAC
(2019)

F-PRNC
2020

Fly-PRAC
2021

PPR-CS
(2015)

Figure 2.8: Classification of partial packet recovery methods for network coding communications.

2.3.3.1 PPR-CS

A variety of packet recovery techniques are proposed specifically for NC. PPR-CS [42][43] relies on

data processing techniques and works transparently from the sender. PPR-CS uses a systematic

RLC encoder and decoder, exploits the coding matrix’s algebraic properties, and uses compress

sensing to recover partial packets. However, It relies on the physical layer to correct most bit errors

using FEC techniques and assumes that errors are sparse, random, and independently distributed

among different packets. For poor channel conditions, the smaller generation sizes are suggested to

18

decrease the sparsity order of errors.

2.3.3.2 PRAC

1101 00100011 1010 Valid

1000 0010 0010 1010 Invalid

0011 1000 0010 1010 Valid

1011 1010 0010 1010 Invalid

Coefficient Vectors Payload

CRC
Check

Coded Packet 1

Coded Packet 2

Coded Packet 4

Coded Packet 3

Step 1 Step 2 Step 3

Step 4

Correction Process

Column i+1

Column i

Column-wise ACR rule

C1

C2

C3

C4

C1

C2

C3

s’1,i

s’2,i

s’3,i

s’4,i

s’1,i

s’2,i

s’3,i

s*1,i

s*2,i

s*3,i
0010

0011

0010

1010

Valid

CRC Check

Invalid

Valid

Invalid

s*1,i

s*2,i

s*3,i

C4

s”4,i s’4,i

s”4,i

No

Yes

-1

Figure 2.9: Estimation and correction process of PRAC.

Packetized rateless algebraic consistency (PRAC) [25], is the first approach that suggests exploiting

the algebraic consistency of coded packets to estimate the location of erroneous symbols. It begins the

recovery process after collecting more than 𝑔 packets. Figure 2.9 shows ACR steps for a generation

of three source packets. In this example, to begin the ACR process, four coded packets are required.

The ACR check performs column by column and aims to check the integrity of a set of coded symbols

present in that column. To check the integrity of the i-th column, it first selects coded symbols of

coded packets 1 to 3. In the second step, the selected coded symbols are used to obtain estimated

symbols. In the third step, the estimated symbols are used to re-code the coded symbol of the fourth

19

packet (𝑠′′4,𝑖). If 𝑠
′′
4,𝑖 is equal to the received version of coded symbols (𝑠′4,𝑖), the ACR check verifies

the integrity of that column. Columns with verified ACR checks are referred to as the consistent

column, and if the ACR check refutes a column’s integrity, we refer to it as an inconsistent column.

PRAC tries to recover inconsistent columns, and for this purpose, it permutes the value of symbols

involved in that columns. After each permutation, PRAC uses ACR to check if the permutated

version of the column is consistent or not. These permutations and checks are continued until the

ACR check verifies the column.

The ACR check, may incorrectly verify the integrity of corrupted information. Assume a

generation with two source packets containing only one segment. Let 𝑠1,1 = 1 and 𝑠2,1 = 3 be

the symbols of source packets and 𝐶1 = {𝑐1,1 = 1, 𝑐1,2 = 2}, 𝐶2 = {𝑐2,1 = 1, 𝑐2,2 = 2}, 𝐶3 = {𝑐3,1 =

1, 𝑐3,2 = 2} be the coefficient vectors of three coded packets.

⎡⎢⎢⎢⎢⎢⎢⎣
𝑐1,1 𝑐1,2

𝑐2,1 𝑐2,2

𝑐3,1 𝑐3,2

⎤⎥⎥⎥⎥⎥⎥⎦×

⎡⎢⎢⎣𝑠1,1
𝑠2,1

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
7

5

4

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.4)

According to Eq. 2.4, 𝑠′1,1 = 7, 𝑠′2,1 = 5, 𝑠′3,1 = 4 are the coded symbols. Assume first two

received packets has been corrupted during the transmission and the received coded symbols are

𝑠′1,1 = 6, 𝑠′2,1 = 6 and 𝑠′3,1 = 4. To check the integrity of received symbols, we use first and second

received packets to estimate source packets.

⎡⎢⎢⎣𝑐1,1 𝑐1,2

𝑐2,1 𝑐2,2

⎤⎥⎥⎦
−1

×

⎡⎢⎢⎣𝑠′1,1
𝑠′2,1

⎤⎥⎥⎦ =

⎡⎢⎢⎣2
2

⎤⎥⎥⎦ . (2.5)

20

According to Eq.2.5, the estimated source packets are 𝑠*1,1 = 2, 𝑠*2,1 = 2. In the next step of

ACR, estimated source packets are used to re-code the third packet.

[︂
𝑐3,1 𝑐3,2

]︂−1
×

⎡⎢⎢⎣𝑠*1,1
𝑠*2,1

⎤⎥⎥⎦ = 4. (2.6)

According to Eq.2.6, the re-coded version of third packets(𝑠′′1,3) is equal to 4 and 𝑠′′1,3 = 𝑠′1,3 = 4.

Therefore, the ACR incorrectly verifies the integrity of received symbols while the estimated version

of symbols (𝑠*1,1 and 𝑠*2,1) are not equal to symbols (𝑠1,1 and 𝑠2,1). In the rest of present work, we

refer to this as a false-positive event in ACR check.

PRAC does not need any overhead over packets and boosts the throughput in good channel

condition. Still, in poor conditions with higher error rates, PRAC suffers from a slow recovery

process making it impractical for larger generation and packet sizes. Another drawback of PRAC is

that the recovery process begins after receiving (𝑔 + 1)-th packets causing a huge decoding delay.

2.3.3.3 DAPRAC

In [1], DAPRAC proposed to address the poor speed of packet recovery. It uses different estimation

and correction procedures to reduce the search space.

In DAPRAC, a CRC denoted by inner CRC is calculated and appended to each source packet

before encoding packets. Upon encoding packets, another CRC called outer CRC is calculated and

appended to each coded packet. DAPRAC uses these CRCs in the estimation and correction phase.

Figure 2.10 and 2.11 are an example of estimation and correction process of DAPRAC. In this

example, DAPARAC recovers partial packets for a generation of 2 source packets. On the receiver

21

Figure 2.10: Error estimation process of DAPRAC. Image from [1].

side, three packets have arrived. First, DAPRAC tries to decode packets using every combination of

2 coded packets out of 3 received ones. It refers to decoded packets as pre-decoded packets. Figure

2.10 shows three sets of pre-decoded packets where 𝑝𝑖 𝑗
𝑘 refers to pre-decoded packet 𝑘 decoded using

received coded packets 𝑝′𝑖 and 𝑝′𝑗 . DAPRAC detects the location of errors by finding differences

between pre-decoded packets when comparing symbol-wisely. Figure 2.11 shows the correction

process of DAPRAC. First, it selects one set of pre-decoded packets. Next, to recover pre-decoded

packets with invalid inner CRC for all detected error locations, DAPRAC changes the symbols of

chosen packets with symbols of the exact location of other pre-decoded packets. After each change,

the integrity of pre-decoded packets is checked with inner CRC and continues changing and checking

until the inner CRC verifies the pre-decoded packets. These pre-decoded packets with verified inner

CRCs are the recovered versions of source packets.

In case of any errors in the same part of packets or inner CRCs, the recovery process fails.

Besides, providing pre-decoded packets is time-consuming and causes delay, especially for a high

number of source packets. Further, similar to PRAC, it can begin the recovery process only after

22

Figure 2.11: Correction process of DAPRAC. Image from [1].

receiving at least 𝑔 coded packets.

2.3.3.4 S-PRAC

Invalid

Valid Valid Valid Valid

Valid Invalid Invalid

Invalid Valid Invalid Invalid

Valid Valid Valid Valid

...

...

...

...

Packet 1

Packet 2

Packet 3

Packet 4

CRC-8 CRC-8 CRC-8 CRC-32

Segment i Error Estimation with ACR

Error Correction with
Permutation and CRC

check

Segment i+1

Figure 2.12: Estimation and correction process of S-PRAC.

To address the same issue, authors of S-PRAC [27], suggest splitting each coded packet into 𝑠

segments and computing one CRC denoted by ICRC for each one. It also considers a CRC computed

for all segments called OCRC and assumes that the CRCs are immune to error. After collecting 𝑔

23

Figure 2.13: The procedure of diving the data (100100) by the CRC divisor to compute the remainder
of division.

packets, it uses ACR to estimate the error location. Then it carries out the recovery process segment

by segment. To recover a corrupted segment, it starts to permute the values of those segments whose

indices are among estimated corrupted locations. It continues the search until the associated ICRC

of the segment verifies it.

During these CRC checks, the CRC might incorrectly verify erroneous segments. First, we review

how CRC is computed for a block of data, and then we mention an example of false-positive even

in CRC checks.

To compute the CRC for a block of data, first, 𝑚− 1 zero bits are appended to the right side of

the data, where 𝑚 refers to the number of bits required to represent the divisor of CRC in binary.

Then, data together with appended zero bits is divided by the CRC divisor. This division is based

on the arithmetic of a finite field with two elements: 0 and 1. Then, the remainder of this division

24

(a) Successful verification (b) Successful refutation (c) Inccorect verification

Figure 2.14: (a) The remainder of the error-free version of data is zero; (b) the remainder of erroneous
data is not zero; (c) an example of false-positive events in CRC checks when the remainder of
erroneous data is zero.

is appended to the original data, and the sender transmits this version of data. Figure 2.13 shows

an example of this procedure.

On the receiver side, to check the integrity of data, the received data is divided by the CRC

divisor, and the CRC check verifies the integrity of data if the remainder is zero. However, there

is a possibility of incorrectly verifying an erroneous block of data. Figure 2.14 gives an example of

false-positive events during CRC check. In this example, while the 1st, 5th, and 6th bits of data

have changed during transmission, after dividing the received version of data by divisor of the CRC,

the remainder is zero, and CRC check incorrectly verifies it. We refer to it as a false-positive event

in the CRC check.

Any false-positive event that happens during the correction causes failure in the recovery process.

In S-PRAC, as the size of the segment or number of source packets increases, the probability of a

false-positive CRC check rises and degrades overall performance and wastes bandwidth.

25

2.4 Conclusion

PPR schemes that rely on ACR for their estimation phase suffer from common drawbacks. For

instance, the estimation phase does not begin for a group of 𝑔 source packets until the (𝑔+1)-th packet

is received. This causes the recovery and decoding operations to take longer. Further, when ACR

identifies a group of symbols as inconsistent, at least one of those symbols is erroneous. The fraction

of inconsistent groups increases as the number of source packets increases, slowing the recovery

process and having a more significant impact on packets with more symbols. Moreover, Cabrera et

al. demonstrate in [23] that while PRAC is capable of recovering the majority of partial packets,

in theory, it has a high computational complexity that is increased for large packet sizes. This also

negatively affects the decoding delay. One of the significant benefits of NC communications over

other coding techniques is recoding at intermediate nodes [44]. Previously proposed PPR methods

only consider point-to-point communications and cannot recover partial packets at intermediate

nodes. Also, These partial packets cannot participate in the recoding procedure. As a result,

communication cannot take advantage of beneficial aspects of NC.

26

Chapter 3

Proposed methods

3.1 Introduction

In this chapter, we propose two separate PPR schemes for NC. In the first section, we introduce

F-PRNC, which is a point-to-point PPR method for RLNC. F-PRNC aims to reduce the decoding

and recovery time, and it is designed to handle burst errors. In the first section, we explain the

encoding, recovery, and decoding procedure of F-PRNC. In the second section, we introduce another

PPR scheme called Fly-PRAC. Fly-PRAC uses a new estimation technique for identifying corrupted

parts of a packet. Also, there are three versions of Fly-PRAC for RLNC, SNC, and relay nodes. In

the second section, the Fly-PRAC’s estimation method, encoding, recovery, and decoding procedures

are explained in detail.

3.2 F-PRNC

The encoding, recovery, and decoding processes of F-PRNC are described in this section.

27

3.2.1 Encoding

The encoding process is performed on 𝑔 uncoded packets {𝑝1,𝑝2,...,𝑝𝑔}, where 𝑔 is the generation

size, and each uncoded packet contains 𝑙 blocks called symbols {𝑠𝑖,1, 𝑠𝑖,2, ..., 𝑠𝑖,𝑙}. All symbols have

the same size containing 𝑞 bits and are chosen from the finite field 𝐺𝐹 (2𝑞). The matrix 𝑃 represents

the uncoded packets as a 𝑔 × 𝑙 matrix. In the encoding process, 𝑔 uncoded packets are transformed

into 𝑛 coded packets using Eq. 3.1, where 𝐶 is an 𝑛 × 𝑔 coefficient matrix whose elements are

selected randomly from 𝐺𝐹 (2𝑞).

𝑃 ′ = 𝐶(𝑛×𝑔) × 𝑃(𝑔×𝑙). (3.1)

For each coded packet 𝑝′𝑖 containing 𝑙 coded symbols {𝑠′𝑖,1,𝑠
′
𝑖,2,...,𝑠

′
𝑖,𝑙}, 𝑅′ redundancy symbols

{𝑟𝑖,1,𝑟𝑖,2,...,𝑟𝑖,𝑅′} are produced using Eq. 3.2 and are appended to 𝑝′𝑖. 𝐶 ′ is a coefficient matrix

with randomly selected elements from 𝐺𝐹 (2𝑞).

𝐶 ′(𝑅′×𝑙) ×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠′𝑖,1

𝑠′𝑖,2

...

𝑠′𝑖,𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(𝑙×1)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟𝑖,1

𝑟𝑖,2

...

𝑟𝑖,𝑅′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(𝑅′×1)

. (3.2)

Additionally, one CRC called 𝐶𝑅𝐶𝑠 is computed over the coded symbols and attached to 𝑝′𝑖. Each

transmitted packet conveys the associated set of coefficients, or both the receiver and the sender

synchronize their random coefficient generators. Here, we assume the latter one.

28

3.2.2 Recovery & Decoding Process

Here we discuss the decoding processes of F-PRNC. F-PRNC decoding process consists of 2 subsequent

recovery phases that we call limited and hinted recovery denoted by LR and HR, respectively. The

decoding process of F-PRNC is also described in Algorithm 1.

Algorithm 1 F-PRNC decoding process
1: Receive the 𝑖-th packet (𝑝′𝑖)
2: result ← limited recovery (𝑝′𝑖)
3: if result = successful recovery then

4: add 𝑝′𝑖 to valid packets’ buffer
5: else

6: add 𝑝′𝑖 to corrupted packets’ buffer
7: end if

8: if 𝑖 ≥ 𝑔 + 1 then

9: go to 14.
10: else

11: 𝑖 ← i+1 and go to 1.
12: end if

13: while the size of valid packets’ buffer < 𝑔 do

14: Indices of the inconsistent columns (IC) ← ACR (corrupted packets’ buffer , valid packets’ buffer)
15: corrupted packet ← Extract the earliest element of corrupted packets’ buffer
16: result ← hinted recovery (corrupted packet, IC)
17: if result = successful recovery then

18: add recovered packet to valid packets’ buffer
19: else

20: discard corrupted packet, 𝑖 ← 𝑖+ 1 and go to 1.
21: end if

22: end while

23: Run the RLNC decoder with packets in the valid packets’ buffer

3.2.2.1 Limited recovery

After receiving 𝑝′𝑖, the LR process checks the 𝐶𝑅𝐶𝑠, and if it is correct, it adds 𝑝′𝑖 to the valid

packets’ buffer. Otherwise, it tries to recover the coded symbols of 𝑝′𝑖.

To recover a partial packet, the algorithm tries to find a subset of 𝑙 error-free symbols out of 𝑙+𝑅′

coded and redundancy symbols within the packet. Each redundancy symbol is a linear combination

of coded symbols within the packets. If the selected subset contains redundancy symbols, using

coefficient vectors, 𝑙 coded symbols can be obtained from it. If the associated CRCs verifies the

29

0 01 11 1
01 1 0 1

11 1 0 0 0

01 1

1

0

1 0

1
1

1 0

0

1 1

Corrupted SymbolsCorrupted Symbols
Permutation

Number

2

3

4

5

6

Permutation
Number

Figure 3.1: The required permutations of 𝑉 to recover packets containing up to 2 corrupted symbols,
where 𝑙 = 2 and 𝑅′ = 3.

subset of selected symbols, the packet is recovered. Otherwise, this process is repeated with another

subset. For selecting these subsets, a Boolean vector of size (𝑙 + 𝑅′) is generated, denoted by 𝑉 in

which the 𝑅′ leftmost elements are ones, and the rest are zeros. The indices of the zero elements

in 𝑉 indicate the subset of 𝑙 selected symbols. Having corrupted symbols in this subset leads to

an incorrect recovery, and CRCs will refute it. If the recovered symbols are incorrect, then 𝑉 is

permuted to the reverse lexicographic order [45], and another subset is selected. The LR process

repeats this procedure 𝑡 times, and if it can find a proper subset, it recovers and adds the packet to

the valid packets’ buffer, and if it fails, it adds 𝑝′𝑖 to the corrupted packets’ buffer. 𝑡 can be considered

a threshold for LR and can be an arbitrary constant or set to recover all packets containing corrupted

symbols up to 𝑇 . For packets with 𝑇 corrupted symbols, by considering the permutation rule applied

to 𝑉 , the packet with 𝑇 rightmost corrupted symbols is the last packet to be recovered. Consider

the example in Figure 3.1. The error locations must have the value “one” to recover the packet,

which can be achieved using permutations. According to Figure 3.1, in the first permutation,
(︀
3
1

)︀
permutations (permutations 2 to 4) are required to shift the “one” value of the second index to

the third index. Generally, at most
∑︀𝑙

𝑖=1

(︀
𝑙+𝑇−𝑖
𝑇−1

)︀
permutations are needed to recover all 𝑇 symbol

errors, where 0 ≤ 𝑇 ≤ 𝑅′. Whenever the valid packets’ buffer size reaches 𝑔, the packets are passed

30

to the RLNC decoder. Otherwise, packets are received until the (𝑔 + 1)-th one.

3.2.2.2 Algebraic consistency rule

ACR in NC has been proposed in [25] and is used to estimate the error locations by checking the

consistency of coded packets. Assume that all coded symbols of 𝑔+1 received packets are stored in

𝑈 ′(𝑔+1)×𝑙. The ACR check performs column by column over matrix 𝑈 ′. For instance, to check the

consistency of 𝑗−th column, the inverse of coefficient matrix is multiplied with 𝑗−th column of 𝑈 ′.

The resulting vector contains estimated symbols {𝑠*1,𝑗 , 𝑠
*
2,𝑗 , ..., 𝑠

*
𝑔,𝑗}.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠*1,𝑗

𝑠*2,𝑗

...

𝑠*𝑔,𝑗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1,1 𝑐1,2 · · · 𝑐1,𝑔

𝑐2,1 𝑐2,2 · · · 𝑐2,𝑔

...
...

. . .
...

𝑐𝑔,1 𝑐𝑔,2 · · · 𝑐𝑔,𝑔

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠′1,𝑗

𝑠′2,𝑗

...

𝑠′𝑔,𝑗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.3)

The estimated symbols are then re-encoded with the coefficients associated with the (𝑔 + 1)-th

packet.

𝑠′′(𝑔+1)𝑗 =

(︂
𝑐(𝑔+1),1 · · · 𝑐(𝑔+1),𝑔

)︂
×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠*1,𝑗

𝑠*2,𝑗

...

𝑠*𝑔,𝑗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.4)

Since the re-encoded and encoded symbols with the same coefficients must be identical in NC, if

𝑠′′(𝑔+1),𝑗 = 𝑠′(𝑔+1),𝑗 is held, the 𝑗-th column is consistent with high probability. Otherwise, the 𝑗-th

column is inconsistent, i.e., at least one of the coded symbols has been corrupted. Finally, indices

31

of the inconsistent columns are stored in an array called 𝐼𝐶.

3.2.2.3 Hinted recovery

In this process, a packet from the corrupted packet’s buffer is selected. The coded symbols that are

not present in the inconsistent columns (𝐼𝐶) are then chosen. Suppose that the indices of 𝑁𝑣𝑠 coded

symbols are not included in 𝐼𝐶. Similar to the LR process, the HR process generates a Boolean

vector called 𝑉 ′ to find a subset of 𝑙 − 𝑁𝑣𝑠 non-corrupted symbols. Unlike the LR process, there

is no threshold on the number of correction trials in HR. If the HR process fails to find the proper

subset, the packet contains more than 𝑅′ corrupted symbols and cannot be recovered. Therefore,

the receiver discards the packet and requests another. Otherwise, it recovers the packet, adds it to

the valid packets’ buffer, and deletes the corrupted one from the corrupted packets’ buffer. Once

the number of the valid packets reaches 𝑔, the valid packets will be passed to the RLNC decoder.

3.3 Fly-PRAC

Here we discuss the encoding, recovery, and decoding processes of Fly-PRAC.

3.3.1 Fly-PRAC For RLNC

3.3.1.1 Encoding

Assume a set of 𝑔 original packets {𝑝1, 𝑝2, ..., 𝑝𝑔} are produced at the transmitter node. Each 𝑝𝑖

comprised of 𝑙 blocks called symbols {𝑠𝑖,1, 𝑠𝑖,2, ..., 𝑠𝑖,𝑙} where each symbol is an elements of 𝐺𝐹 (2𝑞).

In order to encode 𝑔 original packets into 𝑛 coded ones, first, we form a matrix using packets and

denote it as 𝑃(𝑔×𝑙).

32

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠1,1 𝑠1,2 · · · 𝑠1,𝑙

𝑠2,1 𝑠2,2 · · · 𝑠2,𝑙

...
...

. . .
...

𝑠𝑔,1 𝑠𝑔,2 · · · 𝑠𝑔,𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.5)

To encode a packet, a coefficient vector with 𝑔 elements is required. Each element of this vector

is selected randomly and independently from 𝐺𝐹 (2𝑞). The encoder first generates 𝑅− 1 coefficient

vectors. Then form a matrix called the coefficient matrix that contains these coefficient vectors as

its rows. Each of these matrices can produce 𝑅 − 1 coded packets, and the encoder generates at

least 𝑔
𝑅−1 of such matrices.

Let 𝐶𝑖 refer to the i-th coefficient matrix. Each row of 𝐶𝑖 comprises a coefficient vector where

𝑐𝑖𝑗 refers to the coefficient vector in the j-th row of 𝐶𝑖.

𝐶𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐𝑖1

𝑐𝑖2

...

𝑐𝑖𝑅−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.6)

To form coded packets, the 𝐶𝑖 matrix is multiplied with P. The resulting vector is denoted by

𝑃 ′𝑖 and contains 𝑅− 1 coded packets.

𝑃 ′𝑖 = 𝐶𝑖
(𝑅−1×𝑔) × 𝑃(𝑔×𝑙). (3.7)

33

Afterward, a packet that is dependent with 𝑅−1 previously coded packets is produced. At first,

the encoder performs element-wise XOR operation over coefficient vectors of previous 𝑅 − 1 coded

packets to form a proper coefficient vector.

𝑐𝑖𝑅 = 𝑐𝑖1 ⊕ 𝑐𝑖2 ⊕ ...⊕ 𝑐𝑖𝑅−1. (3.8)

Later, it multiplies 𝑐𝑖𝑅 with 𝑃 to form a dependent coded packet. We refer to this set of 𝑅

packets as a group of dependent packets.

𝑝′𝑖𝑅 = 𝑐𝑖𝑅 × 𝑃. (3.9)

Next, each coded packet 𝑝′𝑖 containing 𝑙 coded symbols {𝑠′1, 𝑠′2, ..., 𝑠′𝑙} is divided into 𝑠 equally-

sized segments. Then, for each segment of 𝑝′𝑖, a cyclic redundancy check (CRC) denoted by ICRC

is computed over the segment and appended to the coded packets. Another CRC called OCRC is

also computed over all coded symbol and is appended to the packet. Therefore, each 𝑝′𝑖 contains

𝑠 segments, 𝑠 ICRCs and one OCRC. Each coded packets either conveys the associated set of

coefficients, or the transmitter synchronizes its random coefficient generators with the receiver,

which the latter one is assumed here.

ICRCSegment 1 ICRCSegment 2 ... ICRCSegment s OCRC

Figure 3.2: Packet format after encoding process.

34

3.3.1.2 Recovery

Upon reception of a packet, its consistency is checked using the associated 𝑂𝐶𝑅𝐶. If the 𝑂𝐶𝑅𝐶

verifies a packet, it’s categorized as a valid packet and inserted to 𝐵valid buffer. Afterward, it is

passed to the decoder. On the other hand, if 𝑂𝐶𝑅𝐶 refutes a packet, it is categorized as an invalid

packet and is inserted into 𝐵invalid.

Moreover, after receiving 𝑅 number of packets, if 𝐵invalid contains only one packet, this packet

will be discarded since, in each 𝑅 group of packets, one is redundant, thus by recovering it, no

new information can be gained. Otherwise, those 𝑅 packets are selected from 𝐵invalid and 𝐵valid to

recover invalid ones in the recovery process. The objective of the recovery stage is to recover these

partial packets using two subsequent processes namely error location estimation and correction by

permutation. In this section, we discuss both in detail.

3.3.1.2.1 Error Estimation Step This step intends to provide an estimation of error locations

among received packets. Similar to ACR, we use the inter-packet algebraic consistency among

packets. Upon reception of all coded packets of the 𝑖-th dependent group, the estimation process

begins. In the first step, two matrices are formed, namely, 𝐶 and 𝑆. Each row of 𝐶 contains the

coefficient vector of a coded packet in the 𝑖-th dependent group.

𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐𝑖,1 𝑐𝑖,1 · · · 𝑐𝑖,𝑔

𝑐𝑖+1,1 𝑐𝑖,1 · · · 𝑐𝑖+1,𝑔

...
...

. . .
...

𝑐𝑖+𝑅,1 𝑐𝑖,1 · · · 𝑐𝑖+𝑅,𝑔

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.10)

35

In matrix 𝑆, we keep symbols of each coded packet in one row of 𝑆. The coefficients associated

with the packet in the i-th row of 𝑆 can be found at the i-th row of 𝐶.

𝑆 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠′𝑖,1 𝑠′𝑖,2 · · · 𝑠′𝑖,𝑙

𝑠′𝑖+1,1 𝑠′𝑖+1,2 · · · 𝑠′𝑖+1,𝑙

...
...

. . .
...

𝑠′𝑖+𝑅,1 𝑠′𝑖+𝑅,2 · · · 𝑠′𝑖+𝑅,𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.11)

While we perform the Gaussian elimination algorithm over 𝐶, we do the same row elementary

operations on 𝑆. The only difference is that the scalar used in the operation of matrix 𝑆 is provided

by matrix 𝐶.

In general, if 𝑟𝑜𝑤(𝐶) < 𝑐𝑜𝑙(𝐶) and 𝑟𝑎𝑛𝑘(𝐶) < 𝑟𝑜𝑤(𝐶), then at least one of the coefficient vectors

in 𝐶 is linearly dependent. Therefore, after performing Gaussian elimination over 𝐶 in one of the

rows, all elements must be zero. Assume that after performing Gaussian elimination over 𝐶, the 𝑖-th

row only contains zero elements. If the received coded symbols are error-free, the 𝑖-th row of matrix

𝑆 must contain zero elements. In other words, if we encode a packet with a coefficient vector where

all its elements are zero, then all generated coded symbols must be zero too. Since these symbols

are sent through a noisy channel, some of them may be corrupted. Thus, the non-zero elements

indicate an inconsistency in that column. That means at least one of the elements in that column is

corrupted. The process generates a vector called 𝑉Broken including the index of detected inconsistent

columns. The 𝑉Broken then is used in the correction step. The pseudocode of this process is provided

in Algorithm 2.

36

Algorithm 2 Error Location Estimation
1: 𝑎𝑐𝑖,𝑗 : the element in the i-th row and j-th column of 𝐶

2: 𝑎𝑆𝑖,𝑗 : the element in the i-th row and j-th column of 𝑆
3: 𝑟𝑐𝑖 : i-th row of 𝐶
4: 𝑟𝑠𝑖 : i-th row of 𝑆
5: 𝑅 : number of row in 𝐶 and 𝑆
6: 𝑃𝑟 = 1 : pivot row initialization
7: 𝑃𝑘 = 1 : pivot column initialization
8: index(𝑟𝑖) : gives the index of packet in the i-th row
9: while 𝑃𝑟 < 𝑅 and 𝑃𝑘 < 𝑔 do

10: I ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑖 = 𝑃𝑟 to 𝑅, 𝑎𝑐𝑖,𝑃𝑘
)

11: if 𝑎𝑐𝐼,𝑃𝑘
= 0 then

12: 𝑃𝑘 = 𝑃𝑘 + 1.
13: else

14: swap(𝑟𝑐𝑃𝑟
,𝑟𝑐𝐼)

15: swap(𝑟𝑠𝑃𝑟
,𝑟𝑠𝐼)

16: for 𝑖 = 1 to 𝑅− 1 do

17: for 𝑗 = 𝑖+ 1 to 𝑅 do

18: scalar ← 𝑎𝑐𝑗,𝑖/𝑎
𝑐
𝑖,𝑖

19: 𝑟𝑐𝑗 ← 𝑟𝑐𝑗 − (𝑠𝑐𝑎𝑙𝑎𝑟 × 𝑟𝑐𝑖)

20: 𝑟𝑠𝑗 ← 𝑟𝑠𝑗 − (𝑠𝑐𝑎𝑙𝑎𝑟 × 𝑟𝑠𝑖)
21: end for

22: end for

23: end if

24: 𝑃𝑘 = 𝑃𝑘 + 1
25: 𝑃𝑟 = 𝑃𝑟 + 1
26: end while

27: Index ← return the index of a row in 𝐶 where all its elements are zero.
28: if Index ̸= ∅ then

29: 𝑉Broken ← 𝑟𝑠
Index

: 𝑉Broken contains indices of inconsistent columns
30: return 𝑉Broken
31: end if

37

3.3.1.2.2 Error Correction Step The correction step aims to recover partial packets. For

each partial packet, first, it checks the validity of its segments using associated ICRCs. Upon

detecting invalid segments of the packet, the operation immediately begins for each invalid segment.

Fly-PRAC tries to recover invalid segments by permuting the value of symbols whose indices are

contained in 𝑉Broken.

After each permutation, the integrity of the segment is checked using associated ICRC. Permutations

continue until ICRC verifies the segment. Here, we begin with permutations that have a hamming

distance of 1 from the received version of the segment. If there is no verifiable pattern with this

hamming distance, the process continues with permutations of bigger hamming distances. In some

cases, you might decide to put a threshold on the number of permutations and only try permutations

within a specific range of hamming distance from the received packet.

After verifying a segment, the recovery process moves on to the next invalid segment. When all

of the invalid segments in a partial packet are recovered, the OCRC is re-computed. If the OCRC

verifies the integrity of the packet, the recovered version of the packet is inserted to 𝐵Valid; otherwise,

it is discarded. Furthermore, since one of the packets in each group of 𝑅 packets is dependent, the

recovery stops whenever 𝑅 − 1 packets in the group are recovered or are among valid ones. The

pseudocode of this process is provided in Algorithm 3.

3.3.1.3 Decoding

The decoder keeps packets of 𝐵Valid in a matrix form. Each row of this matrix contains coefficients

and coded symbols of a packet as its elements. Once a new packet is inserted, the decoder runs

Gaussian elimination and keep this matrix on its reduced echelon form. Furthermore, whenever the

38

Algorithm 3 Fly-PRAC recovery process
1: correction : this function represents the correction step of Fly-PARC.
2: Receive the 𝑖-th packet (𝑝′𝑖)
3: status ← categorize 𝑝′𝑖 as valid or partial using associated OCRC
4: if status = valid then

5: add 𝑝′𝑖 to valid packets’ buffer (𝐵Valid)
6: Keep packets in 𝐵Valid in a matrix form denoted by 𝑀
7: Keep 𝑀 on its reduced echelon form
8: pass 𝑝′𝑖 to the decoder
9: else

10: add 𝑝′𝑖 to invalid packets’ buffer (𝐵Invalid)
11: end if

12: if 𝑖 𝑚𝑜𝑑 𝑅 = 0 and 𝐵Invalid size ≥ 1 then

13: Dependent Group (𝐷)← Select latest 𝑅 received packets
14: 𝑁𝑖 ← store number of invalid packets in 𝐷.
15: if 𝑁𝑖 = 1 then

16: Discard the invalid packet in 𝐷 from 𝐵Invalid.
17: else if 𝑁𝑖 ≥ 1 then

18: 𝑉Broken ← Estimate Error locations of 𝐷
19: 𝐷invalid ← Invalid packets in 𝐷
20: Recovered Packets ← correction (𝐷invalid, 𝑉Broken)
21: Add the recovered packets to 𝐵Valid

22: Discard packets in 𝐷invalid from 𝐵Invalid

23: Pass the recovered packets to the decoder
24: end if

25: end if

26: if Rank of 𝑀 = 𝑔 then

27: stop the recovery.
28: end if

rank of matrix reaches 𝑔. it decodes all coded symbols and finishes the process.

3.3.2 Fly-PRAC for Relay nodes

The ability to recoding packets at an intermediate node is one of the most beneficial aspects of

NC. However, partial packets cannot participate in recoding. This is due to the lack of information

needed in recomputing the ICRCs and OCRC. Figure 3.3 represents the percentage of partial packets

after passing through a different number of relays. For instance, after crossing two relays connected

with communication channels, each with BER of 10−4, roughly 90% of packets are partial.

In an end-to-end packet recovery solution, these partial packets, either are discarded or forwarded.

In case of discarding such packets, the maximum throughput degrades with the rate of
∏︀𝑟

𝑖=1(1− 𝑒𝑖)

where 𝑟 indicates the number of relays and 𝑒𝑖 refers to error rate of channel between the 𝑖-th and

39

0 1 2 3 4 5 6

−3
−4

−5
−6

−7

0

50

100

number of relays BE
R 10

𝑦

%
of

p
ar
ti
al

p
ac
ke
ts

Figure 3.3: Percentage of partial packets after passing through a different number of relays, where
the size of the coded symbol is 1000 bytes.

(𝑖+ 1)-th nodes. If relay nodes forward partial packets, the received packets will contain more and

more corrupted symbols leading to an increase in the recovery time. To resolve such issues, we

propose Algorithm 4, to enable recoding and recovery at intermediate nodes. Figure 3.4 compares

forwarding partial packets with the proposed method.

R D

(A) (B)

Corrupted Symbol

Error-free Symbol

R D

Figure 3.4: In (A) the relay node (R) works in a store-and-forward mode and transmits partial
packets; In (B) relay node (R) recovers the packet and then transmits a recoded packet using
received and recovered ones.

40

Algorithm 4 Relay with enabled recoding and recovery
1: Receive the 𝑖-th packet (𝑝′𝑖)
2: status ← categorize 𝑝′𝑖 as valid or partial using associated OCRC
3: if status = valid then

4: add 𝑝′𝑖 to valid packets’ buffer
5: send a recoded packet using packets in valid packets’ buffer
6: else

7: add 𝑝′𝑖 to partial packets’ buffer
8: end if

9: if 𝑖 𝑚𝑜𝑑 𝑅 = 0 and partial packets’ buffer is not empty then

10: recovered packets’ buffer ← recover packets in partial packets’ buffer using Fly-PRAC
11: 𝑁𝑟 ← Number of packets in recovered packets’ buffer
12: 𝑁𝑣 ← Number of packets in valid packets’ buffer
13: Recode 𝑁𝑟 packets using packets in valid and recovered packets’ buffer and send them.
14: if 𝑅−𝑁𝑣 −𝑁𝑟 > 0 then

15: generate 𝑅−𝑁𝑣 −𝑁𝑟 recoded packets using valid and recovered packets’ buffer and send them
16: end if

17: Discards all packets in recovered, partial and valid packets’ buffer
18: end if

3.3.3 Fly-PRAC for Sparse network coding

SNC is an implementation of NC. One of the main advantageous features of this implementation is

the ability to decode some of the packets (i.e., partial decoding) before receiving the entire packets

within a generation. This feature is beneficial to a range of applications, such as real-time video

transmission.

The main difference between SNC and RLNC is the sparsity of coefficient vectors. While RLNC

chooses the elements of the coefficient vectors at random from a finite field, in SNC, most of the

elements in the coefficient vectors are zero. Apart from its benefits, this feature leads to the

generation of a significant number of dependent packets [35].

Here we propose a variation of the Fly-PRAC algorithm for SNC-based communications that

take advantage of those dependent packets in its recovery process. In the following, the encoding,

recovery, and decoding processes of this version of Fly-PRAC are discussed.

41

3.3.3.1 Encoding

The encoding process of Fly-PRAC for SNC and RLNC is quite similar. The only difference between

these two in the encoding procedure is the generation of coefficient vectors.

Regarding the SNC scheme, coefficient vectors are 𝑤-sparse. This means only 𝑤 elements of the

coefficient vector are non-zero. The positions of 𝑤 elements are randomly chosen. Also, each of

𝑤 non-zero elements is randomly and independently selected from 𝐺𝐹 (2𝑞) − {0}. The rest of the

encoding process is similar to the encoding process of Fly-PRAC for RLNC.

3.3.3.2 Recovery and Decoding

After receiving a packet, it is categorized as an invalid or valid packet using the associated 𝑂𝐶𝑅𝐶.

If the packet is valid, then it is inserted into a buffer denoted by 𝐵𝑣𝑎𝑙𝑖𝑑 and passed to the decoder.

However, if the received packet is invalid, it is inserted into another buffer denoted by 𝐵𝑖𝑛𝑣𝑎𝑙𝑖𝑑.

Let 𝑃 ′′ be a set of packets in both 𝐵𝑖𝑛𝑣𝑎𝑙𝑖𝑑 and 𝐵𝑣𝑎𝑙𝑖𝑑 where 𝑃 ′′ = {𝑝′′1, 𝑝′′2, ..., 𝑝′′𝑚} and 𝑝′′𝑖 =

{𝑐𝑖,1, ..., 𝑐𝑖,𝑔, 𝑠′𝑖,1, ..., 𝑠′𝑖,𝑙}. We constitute a matrix using packets in 𝑀 ′.

𝑀 ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝′′1

𝑝′′2

...

𝑝′′𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.12)

Fly-PRAC tries to find a group of dependent packets in matrix 𝑀 ′. First, it dedicates one vector

to each coded packets in 𝑀 ′ where 𝑉𝑖 refers to the vector relating to 𝑃 ′′𝑖 . Then tries to obtain the

reduced echelon form of 𝑀 ′ by performing the Gaussian elimination algorithm. During the Gaussian

42

elimination, every time a packet is involved in the row elementary operation of other packets, its

index is inserted into their corresponding vectors. Once the Gaussian elimination process ends, in

the case of any group of dependent packets, one of the rows in 𝑀 ′ would be a row where its first

𝑔 elements are zeros. Assume the 𝑖-th row of 𝑀 ′ has this characteristic. Similar to the estimation

process of Fly-PRAC for RLNC, the last 𝑙 elements of the 𝑖-th row must be zero; otherwise, it is

evidence of the error for a group of packets whose indices are in 𝑉𝑖. The pseudocode of this process

is provided in Algorithm 5.

Algorithm 5 Finding Dependent Group
1: 𝑟𝑖 : i-th row of 𝐸
2: 𝑎𝑖,𝑗 : the element in the i-th row and j-th column
3: 𝑚 : number of row in 𝐸
4: 𝑃𝑟 = 1 : pivot row initialization
5: 𝑃𝑘 = 1 : pivot column initialization
6: index(𝑟𝑖) : gives the index of packet in the i-th row
7: while 𝑃𝑟 < 𝑚 and 𝑃𝑘 < 𝑔 do

8: I ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑖 = 𝑃𝑟 to 𝑚,𝑎𝑖,𝑃𝑘
)

9: if 𝑎𝐼,𝑃𝑘
= 0 then

10: 𝑃𝑘 = 𝑃𝑘 + 1.
11: else

12: swap(𝑟𝑃𝑟 ,𝑟𝐼)
13: for 𝑖 = 1 to 𝑚− 1 do

14: for 𝑗 = 𝑖+ 1 to 𝑚 do

15: scalar ← 𝑎𝑗,𝑖/𝑎𝑖,𝑖
16: if 𝑠𝑐𝑎𝑙𝑎𝑟 ̸= 0 then

17: 𝑟𝑗 ← 𝑟𝑗 − (𝑠𝑐𝑎𝑙𝑎𝑟 × 𝑟𝑖)
18: 𝜃 ← index(𝑟𝑖)
19: 𝛾 ← index(𝑟𝑗)
20: 𝑉𝜃 ← 𝑉𝜃

⋃︀
𝑉𝛾

21: end if

22: end for

23: end for

24: end if

25: 𝑃𝑘 = 𝑃𝑘 + 1
26: 𝑃𝑟 = 𝑃𝑟 + 1
27: end while

28: ANS ← return a row where its first 𝑔 elements are zero
29: if ANS ̸= ∅ then

30: 𝐼 ← Index(ANS)
31: 𝐷 ← 𝑉𝐼

⋃︀
{𝐼} // D: indices of packets in dependent group

32: 𝐿← last 𝑙 elements of ANS // L: estimation of corrupted locations for packets in 𝐷
33: return (𝐷,𝐿)
34: end if

If among packets involved in the dependent group, no one is invalid, one of the valid packets

43

within the group is discarded from 𝐵𝑣𝑎𝑙𝑖𝑑 since it is redundant. If only one of the packets in the

dependent group is invalid, then it is discarded from 𝐵𝑖𝑛𝑣𝑎𝑙𝑖𝑑 since it is also redundant and broken.

However, if there are two or more invalid packets, the recovery process begins to recover these

packets. Once 𝑔 number of valid or recovered packets are in 𝐵𝑣𝑎𝑙𝑖𝑑, the decoder can decode all

source packets in the generation. Algorithm 6 shows the pseudocode of this process.

Algorithm 6 Fly-PRAC for SNC
1: correction : this function represents the correction step of Fly-PARC.
2: Receive the 𝑖th packet (𝑝′𝑖)
3: status ← categorize 𝑝′𝑖 as valid or partial using associated OCRC
4: if status = valid then

5: add 𝑝′𝑖 to valid packets’ buffer (𝐵Valid)
6: Keep packets in 𝐵Valid in a matrix form denoted by 𝑀
7: Keep 𝑀 on its reduced echelon form
8: pass 𝑝′𝑖 to the decoder
9: else

10: add 𝑝′𝑖 to invalid packets’ buffer (𝐵Invalid)
11: end if

12: 𝐷 : dependent group, 𝐿 : Broken Locations ← DependentGroup(𝐵Invalid

⋃︀
𝐵Valid)

13: if 𝐷 ̸= ∅ then

14: 𝑁𝑖 ← store number of invalid packets in 𝐷
15: if 𝑁𝑖 = 0 then

16: Stop the recovery process.
17: else if 𝑁𝑖 = 1 then

18: Discard the invalid packet in 𝐷 from 𝐵Invalid.
19: Stop the recovery process.
20: else if 𝑁𝑖 ≥ 1 then

21: 𝑉Broken ← Estimate inconsistent columns of 𝐷
22: 𝐷invalid ← Invalid packets in 𝐷
23: Recovered Packets ←correction (𝐷invalid, 𝑉Broken)
24: Add the recovered packets to 𝐵Valid

25: Discard 𝐷invalid from 𝐵Invalid

26: Pass the recovered packets to the decoder
27: end if

28: end if

29: if Rank of 𝑀 = 𝑔 then

30: stop the recovery.
31: end if

44

Chapter 4

Analysis

4.1 Introduction

In the first section of this chapter, we analyze the complexity of the F-PRNC scheme in the encoding

and decoding section. We also calculate the expected number of correction trials at limited and

hinted phases of the recovery process.

In section 2, alongside investigating the complexity of the decoding process of Fly-PRAC, we

study the impact of CRC types and the size of the dependent group (𝑅) on false positive events and

the performance of the recovery process.

4.2 F-PRNC

Here we discuss the complexity of the recovery and decoding processes of F-PRNC.

45

4.2.1 Limited Recovery Phase

Let 𝑒 be the probability of a symbol being corrupted and 𝐿 = 𝑙 + 𝑅′. The probability of having 𝑖

corrupted symbols in a packet is equal to

𝑃𝑒(𝑖) = 𝑒𝑖(1− 𝑒)𝐿−𝑖
(︂
𝐿

𝑖

)︂
, (4.1)

where 𝑒 refers to symbol error rate. Suppose 𝜙𝑖 is the set of all
(︀
𝐿
𝑖

)︀
possible locations of 𝑖 symbol

errors in a packet, and 𝜙𝑗
𝑖 gives the 𝑗th possible error from 𝜙𝑖. Moreover, 𝜙𝑗

𝑖 (𝑚) indicates the 𝑚th

error-index, stored in the descending order in 𝜙𝑗
𝑖 , where 1 ≤ 𝑚 ≤ 𝑖. Suppose that 𝑉 𝑦 is the 𝑦th

element of 𝑉 . Consider a packet with 𝜙𝑗
𝑖 error locations, where 𝑖 ≤ 𝑅′. The number of permutations

to recover such packets is obtained by the sum of required permutations to shift the rightmost “one”

to the error locations until 𝑉 𝑚′
= 1 for all 𝑚′ ∈ 𝜙𝑗

𝑖 . If the error position is to the left of the

rightmost non-shifted “one”, no permutation is required.
∑︀𝑥2−1

𝑋=𝑥1

(︀
𝐿−𝑋
𝛼

)︀
permutations are needed to

shift a “one” from 𝑉 𝑥1 to 𝑉 𝑥2 , where 0 < 𝑥1 < 𝑥2 ≤ 𝐿 and there are 𝛼 “one” elements from 𝑉 𝑥1

to 𝑉 𝐿. For this type of analysis, we derive Eq. 4.2 which gives the number of permutations for

recovering the corrupted packets.

𝐼(𝜙𝑗
𝑖) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑︀𝑖
𝑚=1 𝜆(𝑚)

∑︀𝜙𝑗
𝑖 (𝑚)−1

𝑋=𝑅′−𝑚+1

(︀
𝐿−𝑋
𝑚−1

)︀
𝑖 ≤ 𝑅′

(︀
𝐿
𝑅′

)︀
otherwise,

(4.2)

46

where

𝜆(𝑚) =

⎧⎪⎪⎨⎪⎪⎩
1 𝜙𝑗

𝑖 (𝑚) > 𝑅′ −𝑚+ 1

0 otherwise.

Due to the threshold (𝑡) in LR, any packet will be recovered in 𝑡 or less than 𝑡 permutations, or

the LR process will be terminated. The expected number of permutations for a packet in LR is

𝐸𝑝𝐿 =
𝐿∑︁
𝑖=0

𝑃𝑒(𝑖)×
∑︀(𝐿𝑖)

𝑗=0𝑚𝑖𝑛(𝐼(𝜙𝑗
𝑖), 𝑡)(︀

𝐿
𝑖

)︀ . (4.3)

4.2.2 Hinted Recovery Phase

Regarding the number of coded and redundancy symbols, all packets with up to 𝑅′ corrupted symbols

can be recovered by F-PRNC. Here, we refer to packets with more than 𝑅′ corrupted symbols as

unrecoverable (UR) packets. If the LR process recovers packets with up to 𝑇 corrupted symbols,

the remaining partial packets recovered in HR have more than 𝑇 but fewer than 𝑅′ − 1 corrupted

symbols. Such packets are referred to as HDR packets.

The probability of having 𝑖 corrupted symbols in packets processed in HR, given that the coded

packet has at least 𝑇 + 1 corrupted symbols is

𝑃 (𝑖|𝑖 > 𝑇) =

(︀
𝐿
𝑖

)︀
𝑒𝑖 (1− 𝑒)𝐿−𝑖∑︀𝐿

𝑗=𝑇+1

(︀
𝐿
𝑗

)︀
𝑒𝑗(1− 𝑒)𝐿−𝑗

. (4.4)

Moreover, packets that can be recovered in the HR phase are denoted as HDR packets. The

47

probability that an arbitrary symbol of any HDR packet being corrupted is given by

𝑒′𝐻𝐷𝑅 =
𝑅′∑︁

𝑖=𝑇+1

𝑃 (𝑖|𝑖 > 𝑇)
𝑖

𝐿
. (4.5)

Similarly, the probability of an arbitrary symbol of a UR packet being corrupted is

𝑒′𝑈𝑅 =

𝐿∑︁
𝑖=𝑅′+1

𝑃 (𝑖|𝑖 > 𝑇)
𝑖

𝐿
. (4.6)

Let 𝑁𝐻𝐷𝑅 and 𝑁𝑈𝑅 be the number of HDR and UR packets, respectively. The probability that the

random symbol of either the UR or HDR packets will be corrupted is denoted by 𝑒′ and is equal to

𝑒′ =
𝑁𝐻𝐷𝑅

𝑁𝐻𝐷𝑅 +𝑁𝑈𝑅
𝑒′𝐻𝐷𝑅 +

𝑁𝑈𝑅

𝑁𝐻𝐷𝑅 +𝑁𝑈𝑅
𝑒′𝑈𝑅

. (4.7)

The probability of a random column being erroneous is

𝑃𝐼𝐶 = 1− (1− 𝑒′)𝑁𝐻𝐷𝑅+𝑁𝑈𝑅 . (4.8)

Therefore, the expected number of the inconsistent columns will be

𝐸𝐼𝐶 =
𝑙∑︁

𝑖=0

𝑖

(︂
𝑙

𝑖

)︂
(𝑃𝐼𝐶)

𝑖 (1− 𝑃𝐼𝐶)
𝑙−𝑖. (4.9)

Let 𝜗𝑖 give all possible locations of the corrupted symbols with 𝑖 errors in 𝑉 ′, and 𝜗𝑗
𝑖 give the 𝑗-th

variation out of
(︀
𝑁𝐼𝐶+𝑅′

𝑁𝐼𝐶

)︀
. 𝜗𝑗

𝑖 (𝑚) represents the 𝑚th element of 𝜗𝑗
𝑖 sorted in the descending order.

48

Let 𝐿′ = 𝑁𝐼𝐶 + 𝑅′. Similar to Eq. 4.2, the number of permutations in HR for recovering a packet

with 𝜗𝑗
𝑖 error locations in 𝑉 ′ is

𝐼 ′(𝜗𝑗
𝑖) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑︀𝑖
𝑚=1 𝜆

′(𝑚)
∑︀𝜗𝑗

𝑖 (𝑚)−1
𝑋=𝑅′−𝑚+1

(︀
𝐿′−𝑋
𝑚−1

)︀
𝑖 ≤ 𝑅′

(︀
𝐿′

𝑁𝐼𝐶

)︀
otherwise,

(4.10)

where

𝜆′(𝑚) =

⎧⎪⎪⎨⎪⎪⎩
1 𝜗𝑗

𝑖 (𝑚) > 𝑅′ −𝑚+ 1

0 otherwise.

Thus, the expected number of permutations for a packet in HR is equal to

𝐸𝑝𝐻 =
𝐿∑︁

𝑖=𝑇+1

𝑃 (𝑖|𝑖 > 𝑇)×
∑︀(𝐿

′
𝑖)

𝑗=1 𝐼 ′(𝜗𝑗
𝑖)(︀

𝐿′

𝑖

)︀ . (4.11)

4.2.3 Complexity of RLNC and ACR

The RLNC decoder uses Gaussian elimination for the decoding process. The complexity of Gaussian

elimination over 𝑔+1 packets is equal to 𝑂(𝑔)3. In the ACR process, each column must be multiplied

by the inverse matrix of coefficients to obtain the estimated data symbols. The cost of this procedure

is also 𝑂(𝑔3).

4.3 Fly-PRAC

Generally, the proposed method on the recipient side consists of recovery and decoding processes.

The recovery process passes only valid packets to the decoder, and it ends whenever there are 𝑔

49

independent packets. Also, the decoder performs a Gaussian elimination over packets in 𝐵𝑣𝑎𝑙𝑖𝑑 to

decode symbols. However, the decoder might receive some dependent packets too. For decoding

packets, the standard RLNC decoder is employed which has a complexity of 𝑂((𝑔 + 𝑁𝑑𝑝)
3) where

𝑁𝑑𝑝 indicate to the number of dependent packets in 𝐵𝑣𝑎𝑙𝑖𝑑.

Besides, the recovery process works on both partial and valid packets, and its complexity depends

on the number of received packets. Some partial packets might not be recovered during the recovery

process due to the false-positive events in error estimation or correction. Parameters such as

generation size (𝑔), field size (𝐺𝐹 (2𝑞)), segment numbers (𝑠), and 𝑅 affects the probability of

such events. Therefore, they have an impact on the performance of the proposed method. Here we

investigate the impact of these parameters in detail.

4.3.1 False Positive in correction phase

Generally, CRC is a compelling solution to the error detection problem, although it might falsely

verify the integrity of erroneous data, which we refer it as a false positive event. According to a

given bound for the probability of undetected errors of a CRC in [46], the probability of such event

for a segment containing 𝑛𝑠 bits and BER of 𝜖 is denoted by 𝑃𝑓𝑝 and can be calculated using Eq.

4.12.

𝑃𝑓𝑝 =

𝑛𝑠∑︁
𝑖=0

𝐴𝑖
𝑤(1− 𝜖)𝑛𝑠−𝑖(𝜖)𝑖, (4.12)

where 𝐴𝑖
𝑤 refers to the number of valid codewords with the hamming weight of 𝑤. The Eq. 4.12

clearly shows the impact of CRC type and data length on 𝑃𝑓𝑝. Assume a packet containing 𝑛𝑝 bits,

which comprises a segment of size 𝑛𝑠 bits and an ICRC with 𝑛𝑐 bits where 𝑛𝑝 = 𝑛𝑠 + 𝑛𝑐. We want

50

to transmit such packets over a noisy binary symmetric channel. Here we also assume the ICRC is

error-free. Let 𝑉𝑠 and 𝑉 ′𝑠 represent vectors of size 𝑛𝑠, respectively, holding the error-free and received

versions of segment data in binary. Also, let 𝐸 be a vector of size 𝑛𝑠 representing errors locations

with “1” elements, while other error-free locations are zeros.

𝑉𝑠 ⊕ 𝐸 = 𝑉 ′𝑠 . (4.13)

Upon receiving a packet, the integrity of information is checked by ICRC, and if it is inconsistent

with the data, the recovery process begins. In correction trials, the value of 𝑉 ′𝑠 is changed until the

ICRC verifies its integrity. To change the value of 𝑉 ′𝑠 , XOR operation is performed on 𝑉 ′𝑠 and 𝑉𝑝. 𝑉𝑝

is a vector of the same size as 𝑉 ′𝑠 containing zero and one elements. After each change, associated

ICRC checks the integrity of resulting vector 𝑉 ′′𝑠 .

𝑉 ′𝑠 ⊕ 𝑉𝑝 = 𝑉 ′′𝑠 . (4.14)

Afterward, if ICRC verifies the resulting vector (𝑉 ′′𝑠) as an error-free version of 𝑉 ′𝑠 , the correction

ends, and 𝑉 ′′𝑠 is replaced with 𝑉 ′𝑠 in the packet. On the other hand, if the ICRC refutes integrity of

𝑉 ′′𝑠 , this process repeats with different 𝑉𝑝 vectors until the ICRC verifies the 𝑉 ′′𝑠 .

Assume we are using a CRC with linearity properties, i.e., the XOR of two valid codewords

yields another valid codeword. If 𝐸 is not a zero vector and 𝑉𝑝⊕𝐸 constitute a valid codeword, the

ICRC will verify it. Since 𝑉 ′′𝑠 ̸= 𝑉𝑠, a false positive event has happened.

Let 𝛼1 and 𝛼2 be hamming weight of 𝐸 and 𝑉𝑝 in turn. Clearly, the weight of 𝐸 ⊕ 𝑉𝑝 is ranging

from |𝛼1 − 𝛼2| to 𝑚𝑖𝑛(𝑛𝑠, 𝛼1 + 𝛼2). Suppose ℎ𝑑 be the hamming weight of 𝐸 ⊕ 𝑉𝑝, therefore the

51

probability of 𝐸 ⊕ 𝑉𝑝 become a valid codeword is denoted by 𝑃𝑣𝑎𝑙𝑖𝑑 and it can be calculated by Eq.

4.15.

𝑃𝑣𝑎𝑙𝑖𝑑 =
𝐴ℎ𝑑

𝑤(︀𝑛𝑝

ℎ𝑑

)︀ . (4.15)

Assume a 𝑉𝑝 with the weight of 𝛼2 XOR with 𝑉 ′𝑠 containing 𝛼1 bit errors. Suppose 𝑗 is the

number of elements in 𝑉𝑝 that are “1” at elements where their corresponding elements in 𝑉 ′𝑠 are

erroneous. As a result, the hamming distance between 𝑉 ′′𝑠 and 𝑉𝑠 would be 𝛼1 + 𝛼2 − 2𝑗. Clearly,

the value of 𝑗 and 𝛼1 + 𝛼2 − 2𝑗 can not be more than the size of the segment which is 𝑛𝑠. Also, we

refer the minimum value of 𝑗 as 𝑗𝑚𝑖𝑛 which is calculated by Eq. 4.16.

𝑗𝑚𝑖𝑛 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 𝛼1 + 𝛼2 − 𝑛𝑠 ≤ 0

𝛼1 + 𝛼2 − 𝑛𝑠 𝑂.𝑊.

(4.16)

The recovery algorithm starts by using all permutations of 𝑉𝑝 with minimum weight, and

obviously, the correct answer is found where 𝛼1 = 𝛼2. Thus, 𝛼2 is increased from 1 to 𝛼1. Also,

there are
(︀
𝛼2

𝑗

)︀(︀
𝑛𝑠−𝛼2

𝛼2−𝑗
)︀
possible correction trials for a 𝑉𝑝 of weight 𝛼2.

Let 𝑃𝑛𝑞 indicate the probability of no false positive event during all correction trials using 𝑉𝑝 of

weight 𝛼2 where 𝛼1 ̸= 𝛼2 . It can be calculated using the Eq. 4.17.

𝑃𝑛𝑞 =

𝛼2∏︁
𝑗=𝑗𝑚𝑖𝑛

(1− 𝐴𝛼1+𝛼2−2𝑗
𝑤(︀ 𝑛𝑝

𝛼1+𝛼2−2𝑗
)︀)(𝛼2

𝑗)(
𝑛𝑠−𝛼2
𝛼2−𝑗). (4.17)

Furthermore, let 𝑃𝑒𝑞 indicate the probability of no false positive event when during all correction

52

trials using 𝑉𝑝 of weight 𝛼2 where 𝛼1 = 𝛼2 . The value of 𝑃𝑒𝑞 can be calculated usint the Eq. 4.18.

𝑃𝑒𝑞 =

𝛼2−1∏︁
𝑗=𝑗𝑚𝑖𝑛

(1− 𝐴𝛼1+𝛼2−2𝑗
𝑤(︀ 𝑛𝑝

𝛼1+𝛼2−2𝑗
)︀)(𝛼2

𝑗)(
𝑛𝑠−𝛼2
𝛼2−𝑗). (4.18)

In all, the probability of no false positive event, where 𝐸 has a hamming weight of 𝛼1, can be

calculated using Eq. 4.19 and is denoted by 𝑃𝑛𝑓𝑝.

𝑃𝑛𝑓𝑝 =

𝛼1∏︁
𝛼2=0

𝑓(𝛼1, 𝛼2), (4.19)

where

𝑓(𝛼1, 𝛼2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑃𝑛𝑞 𝛼1 < 𝛼2

𝑃𝑒𝑞 𝛼1 = 𝛼2 ̸= 0

1 𝛼1 = 𝛼2 = 0

.

Lastly, for a channel with BER of 𝜖, the probability of no false positive event or successful

recovery of a segment is denoted by 𝑃sr and is calculated by Eq. 4.20.

𝑃sr =

𝑛𝑠∑︁
𝛼1=0

(1− 𝜖)𝑛𝑠−𝛼1(𝜖)𝛼1(

𝛼1∏︁
𝛼2=0

𝑓(𝛼1, 𝛼2)). (4.20)

Figure 4.1 shows the probability of successful recovery for different BERs. The red and blue

trends are 𝑃𝑠𝑟 calculated using the Eq. 4.20 and the green and black trends are simulation results.

This figure illustrates that as BER increases, the 𝑃𝑠𝑟 falls, and this fall is more dramatic for larger

segment sizes.

53

10−6 10−5 10−4 10−3 10−2

0.85

0.9

0.95

1

BER

𝑃
′ sr

Eq. 4.20 - 1 byte

Simulation - 1 byte

Eq. 4.20 - 2 byte

Simulation - 2 byte

Figure 4.1: The probability of successful recovery of a segment (𝑃 ′𝑠𝑟) for CRC 0xe7 and different
BERs.

4.3.2 Impact of R on the recovery process

In this subsection, we investigate the impact of the number of packets in a dependent group (𝑅) on

the expected inconsistent columns and false positive events in the estimation process.

For a channel with BER of 𝜖, the probability that a received symbol of size 𝑞 bits is error-free

can be calculated by the Eq. 4.21, and it is denoted by 𝑝𝑠ℎ.

𝑝𝑠ℎ = (1− 𝜖)𝑞. (4.21)

In the estimation of error locations for a group of 𝑅 packets, one consistency check is performed

over each column. The probability of an arbitrary selected column be error-free is computed by Eq.

4.22 and denoted by 𝑝𝑐ℎ(𝑅).

𝑝𝑐ℎ(𝑅) = (𝑝𝑠ℎ)
𝑅. (4.22)

54

According to [25], 𝑔+1 packets are required in ACR process. Conversely, the proposed estimation

of error locations rely on a group of 𝑅 dependent packets where 2 < 𝑅 ≤ 𝑔 + 1. Therefore (𝑝𝑐ℎ)
𝑅 ≥

(𝑝𝑐ℎ)
𝑔+1. In other words, as the value of 𝑅 decreases, the probability of receiving an error-free column

rises.

Further, the expected number of inconsistent column (𝐸𝑖𝑐) for a group of 𝑅 packets each with

𝑙 symbols and 𝑠 segments is calculated by Eq. 4.23. Figure 4.2 shows a comparison of 𝐸𝑖𝑐 between

proposed estimation process with different 𝑅 (red and blue trends) and ACR (black trend).

𝐸ic =
𝑙∑︁

𝑖=1

(︂
𝑙

𝑖

)︂
× 𝑖× (𝑝𝑐ℎ)

𝑙−𝑖(1− 𝑝𝑐ℎ)
𝑖. (4.23)

101 102

1

2

3

4

𝑅

𝐸
ic

𝜖 = 10−4

101 102

5

10

15

𝑅

𝐸
ic

𝜖 = 10−3

Figure 4.2: The comparison of expected number of inconsistent column for different 𝑅 (colored)
with ACR (Black) in a channel with BER of 𝜖 where 𝑔 = 100, 𝑙 = 50, and field size is 𝐺𝐹 (28)

A fall in 𝑝𝑐ℎ(𝑅) negatively affects the recovery process by raising 𝐸𝑖𝑐 and consequently raising

the search space. The recovery process performs over each invalid segment by permuting the value

of symbols in inconsistent columns. For a symbol with the size of 𝑞 bits, there are 2𝑞 permutations.

Assume the expected number of inconsistent columns for each segment is equal to 𝐸𝑖𝑐
𝑠 . The maximum

number of permutations for an invalid segment with 𝐸𝑖𝑐
𝑠 symbols in inconsistent columns is denoted

55

by 𝑁𝑝 and calculated by Eq. 4.24.

𝑁𝑝 = (2𝑞)
𝐸ic
𝑠 . (4.24)

In addition, figure 4.3 compares the number of involved symbols in inconsistent columns for

𝑅 = 5 and 𝑅 = 9. It illustrates that for the same error pattern, the number of symbols estimated

as corrupted ones for 𝑅 = 5 is half of what is for 𝑅 = 9. A reduction in the number of symbols

estimated as corrupted ones result in lower search space and can boost the recovery performance.

P1

P2

P3

P4

P5

P6

P7

P8

P9

S1 S2 S4S3

Invalid

Valid

Valid

Invalid

Valid

Invalid

Valid

Invalid

Valid

Inner CRC
Status

P1

P2

P3

P4

P5

S1 S2 S4S3

Invalid

Valid

Valid

Invalid

Valid

Inner CRC
Status

Redundant

P6

P7

P8

P9

P10

S1 S2 S4S3

Invalid

Valid

Invalid

Valid

ValidRedundant

Redundant

(B)

ACR Check

(A)

ACR Check

ACR Check

Valid Symbol

Symbol Estimated as Corrupted

Inconsistent Column

Consistent Column

Corrupted Symbol

Figure 4.3: For a segment containing 4 symbols and 𝑔 = 8; for Fly-PRAC with (A) 𝑅 = 9 and (B)
𝑅 = 5.

According to [25], when a column is inconsistent, the probability of a false positive event during

ACR is equal to 2−𝑞 where 𝑞 refers to the length of each symbol. Here we investigate the probability

56

of false positive events during the error locations’ estimation process.

The false positive event for a column only happen when there are more than one erroneous

symbol. In order to illustrate this, first, let 𝐷 refer to a group of 𝑅 error-free packets that are

linearly dependent.

𝐷 = {𝑝′1, 𝑝′2, ..., 𝑝′𝑅}. (4.25)

Since packets in 𝐷 are linearly dependent, there exists a set of coefficients (X) with 𝑅 elements

from 𝐺𝐹 (2𝑞)− {0} that satisfies the Eq. 4.27.

∃𝑋,𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑅), ∀𝑥𝑖 ∈ 𝑋,𝑥𝑖 ∈ 𝐺𝐹 (2𝑞)− {0},

where

𝑅∑︁
𝑖=0

𝑥𝑖𝑝
′
𝑖 = {0, 0, ..., 0}. (4.26)

Since operations over packets happen symbol-wisely, thus Eq. 4.27 can be rewritten only for the

j-th symbol across 𝑅 packets.

∃𝑋,𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑅), ∀𝑥𝑖 ∈ 𝑋,𝑥𝑖 ∈ 𝐺𝐹 (2𝑞)− {0},

57

where

𝑅∑︁
𝑖=0

𝑥𝑖𝑠
′
𝑖,𝑗 = 0. (4.27)

Assume only the j-th symbol of the i-th packet in 𝐷 is erroneous.

𝑠′𝑖,𝑗 = 𝑠𝑖,𝑗 + 𝑒, (4.28)

where 𝑒 ∈ 𝐺𝐹 (2𝑞) − {0}. Also, the rest of symbols 𝑠′𝑖,𝑘 = 𝑠𝑖,𝑘 where 𝑘 ∈ {1, 2, ..., 𝑅} − {𝑗}. Since

the 𝑗-th symbol is erroneous, the Eq. 4.27 can be rewritten as Eq. 4.29.

𝑅∑︁
𝑖=0

𝑥𝑖𝑠𝑖,𝑗 + 𝑥𝑖𝑒 = 0 + 𝑥𝑖𝑒. (4.29)

The inconsistency of a column will not be detected if the result of Eq. 4.29 is zero. Since both

𝑥𝑖 and 𝑒 are non-zero, the Eq. 4.29 is not zero too. Therefore, no false positive can happen if only

one of the symbols in a column is broken.

Similar to the false positive probability of ACR checks, when there exists more than one erroneous

symbol in a column, the probability of a false positive event for a column is 2−𝑞 [25]. Also, the Eq.

4.30 computes the probability of a false positive event during the estimation of error locations

according to the channel condition, which is denoted by 𝑝′fp.

𝑝′fp =
𝑅∑︁
𝑖=2

(︂
𝑅

𝑖

)︂
× (𝑝𝑠ℎ)

𝑅−𝑖 × (1− 𝑝𝑠ℎ)
𝑖 × 1

2𝑞
. (4.30)

To provide estimation for an entire generation of 𝑔 packets, this process must be done for at

58

least 𝑔
𝑅−1 . There are 𝑙 columns for each group of dependent packets. For an entire generation of

source packets, the consistency of at least 𝑔
𝑅−1 × 𝑙 column must be checked. The expected number

of false-positive events for an entire generation is denoted by 𝐸fp and is calculated by Eq. 4.31.

Further, figure 4.4 shows that a rise in the value of 𝑅 increases the expected number of false-positive

events.

𝐸fp =
𝑔

𝑅− 1
× 𝑙 × 𝑝′fp. (4.31)

20 40 60 80 100

0.5

1

·10−3

𝑅

𝐸
fp

𝜖 = 10−4

20 40 60 80 100

2

4

6

8
·10−2

𝑅

𝐸
fp

𝜖 = 10−3

Figure 4.4: The comparison of expected number of false positive events between the ACR (Black)
and the proposed error locations’ estimation process (colored) for a channel with BER of 𝜖 where
𝑔 = 100, 𝑙 = 50, and field size is 𝐺𝐹 (28).

For each dependent group, one Gaussian elimination algorithm is performed, which has a complexity

of 𝑂(𝑅3). Since there are 𝑔
𝑅−1 dependent groups for a generation, this complexity for entire

generation is equal to 𝑂(𝑔
𝑅−1𝑅

3).

59

Chapter 5

Simulation Results

5.1 Introduction

This chapter compares the proposed methods with the most relevant PPR schemes by carrying out

extensive simulations. In the first section, we compare F-PRNC with DAPRAC and S-PRAC in

different criteria. We expose packets to burst errors and evaluate the performance of PPR schemes for

different byte error rates (ByER). In section two, we compare Fly-PRAC with S-PRAC in a variety

of settings. We expose packets to different bit error rates(BER) and evaluate the effectiveness of Fly-

PRAC and S-PRAC in different environments. It is essential to mention that the implementation

of some methods and definition of some terms between the two sections are slightly different, which

we discuss in experiment setups of each section.

60

5.2 F-PRNC

5.2.1 Experiment Setup

The discussed methods are implemented using the Kodo library [47]. Simulations are performed using

𝐺𝐹 (28), carried out 5000 times, and the average is reported. Moreover, CRC and redundancies are

not considered in the payload size. All the mentioned methods use one CRC-321 for each coded

packet. However, S-PRAC adds an extra CRC-82 for each segment. We introduce a goodput as

the successful decoding rate of data at the destination. For computing the goodput of F-PRNC, a

retransmission delay of 36𝑚𝑠 is considered as an estimation for the retransmission delay, which is

close to the average round-trip time from Gdansk to Bern and Paris [48]. In implementing S-PRAC,

we assume that if any false-positive occurs in CRC checks of correction trials, the recovery procedure

for that generation of packets fails, and the sender node must resend all coded packets.

5.2.2 Comparison of F-PRNC with DAPRAC and S-PRAC

Fig. 5.1 compares the goodput of DAPRAC, S-PRAC, and F-PRNC, where the byte error rate

(ByER) is 0.1, and the payload size is 8 bytes. Fig. 5.1 shows that by increasing the generation size,

the goodput of DAPRAC and S-PRAC drops dramatically and almost reaches zero. In DAPRAC,

increasing the generation size results in more decoding failures since any error in the exact location

of separate packets or an error in any inner CRCs can cause a decoding failure, which is more likely

to occur for larger generation sizes. In S-PRAC, CRC-8 checks are used for the detection of errors

in the recovery process. Since each segment has one CRC-8, it may incorrectly verify the segments

1A CRC is called a CRC-32 when its check value is 32 bits long.
2A CRC is called a CRC-8 when its check value is 8 bits long.

61

5 10 15 20

100

101

102

103

Generation size (g)

G
o
o
d
p
u
t
(b
y
te
/s
ec
)

F-PRNC, R=4
F-PRNC, R=2
S-PRAC, 𝑠=2
S-PRAC, 𝑠=4
DAPRAC

Figure 5.1: The comparison of F-PRNC (with 𝑅′ redundancy symbols), S-PRAC (with 𝑠 segments)
and DAPRAC, on a log-normal scale, where the payload size is 8 bytes and ByER is 0.1.

with more than 8 bits. This leads to a decoding failure, which is more likely to occur for larger

generation sizes. By increasing the generation size, the goodput of F-PRNC decreases, although it

has a minor effect after a certain point.

Table 5.1 shows the impact of using redundancy on the decoding and retransmission delays

of the extra coded packets, where 36𝑚𝑠 delay is considered for each retransmission, and ByER is

0.14. If S-PRAC and DAPRAC fail in decoding a generation properly, the generation must be

retransmitted until the successful recovery. We also assume that no errors in S-PRAC could occur

in the inner CRCs. As shown in Table 5.1, F-PRNC outperforms DAPRAC, and S-PRAC in terms

of retransmission and decoding delays in most settings. By increasing the payload size from 8 to

16 bytes and the generation size from 4 to 16, the retransmission and decoding delays increase

dramatically for S-PRAC and DAPRAC which make them impractical for real-world applications.

62

Table 5.1: The comparison of F-PRNC (with 𝑅′ redundancy symbols), S-PRAC (with 𝑠 segments),
and DAPRAC in terms of retransmission delay (RD) and decoding delay (DD) in milliseconds, where
the ByER is 0.14.

Payload size (bytes) 8 16

Generation size 4 16 4 16

F-PRNC

𝑅′=2
RD 6.6 72.36 34.9 511.2

DD 71.2 486.5 256.4 4286.2

𝑅′=4
RD 0.8 8.28 11.23 95.4

DD 60.8 490.9 406.5 11618.2

S-PRAC

𝑠=2
RD 1507.3 > 106 143856 > 106

DD 143.2 > 106 13349.7 > 106

𝑠=4
RD 367.8 > 106 21032.5 > 106

DD 43.6 34372.6 1944.4 > 106

DAPRAC
RD 4219.6 > 106 > 106 > 106

DD 80240.3 > 106 > 106 > 106

5.3 Fly-PRAC

In this section, we compared the performance of Fly-PRAC with its most notable related works,

i.e., S-PRAC for various settings. First, in a point-to-point scenario using RLNC for encoding and

decoding packets, the effect of generation size and payload size on goodput is reported for a variety

of error rates. Further, in a unicast communication through a relay, the impact of enabling recoding

and recovery for the intermediate node is investigated. Next, for a point-to-point scenario, the

efficiency of packet recovery in terms of goodput and average decoding delay (ADD) for SNC-based

communication is also examined. Finally, these methods are compared in terms of recoverability

and overhead.

63

5.3.1 Experiment Setups

All methods are implemented using the KODO library, and each simulation is repeated 10000 times,

and the average is reported. Throughout the experiments, we consider a field size of𝐺𝐹 (28). Further,

we assume that only the coded symbols can have errors for a packet, and the rest is immune to errors.

In the S-PRAC implementation, we assume that if any false positive events occur during the CRC

check correction process, the packet is discarded, and the receiver waits for a sufficient number of

coded packets to continue the recovery process.

5.3.2 Impact of Generation and Payload size on Packet Recovery

Here, we have compared the packet recovery performance of Fly-PRAC and S-PRAC in terms of

goodput for different BERs. Also, the impact of generation and payload size on completion time is

investigated.

0 0.2 0.4 0.6 0.8 1

·10−4

200

300

400

500

𝐵𝐸𝑅

𝐺
𝑜𝑜
𝑑
𝑝
𝑢
𝑡
(𝐾

𝑏𝑝
𝑠)

Fly-PRAC, R=10

Fly-PRAC, R=30

Fly-PRAC, R=50

S-PRAC

(A) Symbol size of 300 bytes

0 0.2 0.4 0.6 0.8 1

·10−4

102.5

103

𝐵𝐸𝑅

𝐺
𝑜𝑜
𝑑
𝑝
𝑢
𝑡
(𝐾

𝑏𝑝
𝑠)

Fly-PRAC, R=10

Fly-PRAC, R=30

Fly-PRAC, R=50

S-PRAC

(B) Symbol size of 900 bytes

Figure 5.2: Impact of error rates and payload size on goodput for SPRAC and Fly-PRAC with 4
segments and 𝑔 = 100.

Figure 5.2 shown that for higher BER, the Fly-PRAC outperforms S-PRAS in terms of goodput.

64

For instance, when payload size is 300 bytes, Fly-PRAC with 𝑅 = 10 has a goodput of 355.1 Kbps

compared to 271.2 Kbps for S-PRAC. Further, for larger payload sizes, the Fly-PRAC begins to

perform better than S-PRAC at lower error rates. It can be observed that with BER = 10−5,

Fly-PRAC with 𝑅 = 10 has a goodput of 972 Kbps compared to 886 Kbps for S-PRAC.

40 60 80 100 120 140 160 180 200

103

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 (𝑔)

𝐶
𝑜𝑚

𝑝
𝑙𝑒
𝑡𝑖
𝑜𝑛

𝑇
𝑖𝑚

𝑒
(𝑚

𝑠)

Fly-PRAC, R=10

S-PRAC

Figure 5.3: Completion time comparison between Fly-PRAC and S-PRAC where BER= 5𝑒− 5 and
segment size = 4 and payload size is 800 bytes.

Figure 5.3 illustrates that for larger generation sizes, it takes more time to decode a generation

due to the higher complexity of decoding. It can be observed that, Fly-PRAC with 𝑅 = 10, the

completion times are 303 𝑚𝑠 and 903.7 𝑚𝑠, when the generation sizes are 50 and 100, respectively.

Generally, larger payload sizes have more inconsistent columns relatively, which makes the

recovery process more time-consuming. Albeit, Figure 5.4 shows this increase is more dramatic

for S-PRAC. For instance, increasing payload size from 300 to 900 bytes leads to an increase in the

completion time of S-PRAC from 836.5 𝑚𝑠 to 2544.8 𝑚𝑠. While, for Fly-PRAC with 𝑅 = 10 the

completion times for the same payload sizes are increased from 667.1 𝑚𝑠 to 910.3 𝑚𝑠.

65

300 400 500 600 700 800 900
102.8

103

103.2

103.4

𝑃𝑎𝑦𝑙𝑜𝑎𝑑 𝑆𝑖𝑧𝑒 (𝐵𝑦𝑡𝑒𝑠)

𝐶
𝑜𝑚

𝑝
𝑙𝑒
𝑡𝑖
𝑜𝑛

𝑇
𝑖𝑚

𝑒
(𝑚

𝑠) Fly-PRAC, R=10

Fly-PRAC, R=20

S-PRAC

Figure 5.4: Completion time comparison between Fly-PRAC and S-PRAC where 𝑠 = 4, BER= 5𝑒−5
and 𝑔 = 100.

5.3.3 Impact of enabling recovery at intermediate nodes

Here we compare Fly-PRAC and S-PRAC in a unicast scenario where the source and destination

communicate through a relay node. The channel between source and relay or relay and destination

have a BER of 𝜖. For the Fly-PRAC scenario, the relay uses the algorithm 4 i.e., the relay is capable

of recoding and recovering partial packets, while the relay in the S-PRAC scenario only works in

store-and-forward mode. Table 5.2 clearly illustrates that in a poor channel condition, the proposed

method decodes a generation with fewer transmissions. In particular, it is shown that for BER of

5 × 10−5, Fly-PRAC with R=10 requires 136.6 transmissions on average to decode a generation

compared to 146.1 required packets for S-PRAC.

Here in Table 5.2, the time spent by relay, recovering, and recoding packets are also considered

in the completion time of Fly-PRAC. It can be observed that for poor channel conditions like

BER=10−4, the completion time of Fly-PRAC with R=5 and S-PRAC are 1502 𝑚𝑠 and 3069 𝑚𝑠,

respectively.

66

Table 5.2: The comparison of Fly-PRAC and S-PRAC, in terms of Completion Time (CT) and the
average sent packets to decode a generation. Both methods using four segments and communicating
through a relay where channels have BER of 𝜖.

𝜖 = 5e-5 𝜖 = e-4
Method R

Total Sent CT(ms) Total Sent CT(ms)

5 141.3 1126.2 181.9 1502.5
Fly-PRAC

10 136.6 1221.9 202 2344

S-PRAC - 146.1 1476.45 212.3 3069.97

5.3.4 Comparison of packet recovery for SNC communication

Here we evaluated the impact of Fly-PRAC and S-PRAC on partial decoding for SNC. In [35], Zarei

et al. suggested a metric called average decoding delay (ADD) to evaluate partial decoding of SNC.

ADD is calculated by the following equation.

𝐴𝐷𝐷 =

∑︀𝑔
𝑖=0 𝑑𝑖
𝑔

, (5.1)

where 𝑑𝑖 indicates the number of transmissions until the ith-packet is decoded.

As we decrease the value of 𝑤, more packets must be collected to obtain 𝑔 innovative packets.

For instance, when no partial packet recovery is used, for a channel with BER of 5× 10−5, when 𝑤

is 2 and 3, the average number of required coded packets to decode a generation entirely are 372.7

and 231 in turn.

The proposed method exploits redundant packets to begin recovery earlier. This enhances the

ADD of an SNC scheme in noisy conditions. Table 5.3 illustrates that utilizing packet recovery

boosts the partial decoding in terms of ADD. For instance, when BER= 5 × 10−5, 𝑤 = 2 and

67

Table 5.3: The comparison of Fly-PRAC (with R=5), S-PRAC and No PPR in terms of ADD and
average required packet to decode a generation of 100 packets and payload size of 800 bytes.

BER 𝑤 Fly-PRAC S-PRAC No PPR

5e-5

2
ADD 103.9 114 113.5

Total Sent 322.97 326.7 372.7

3
ADD 118.9 129.8 131.4

Total Sent 215.9 220.3 231

e-4

2
ADD 106.9 156.7 161

Total Sent 326.2 427 485.5

3
ADD 122.6 178 180.5

Total Sent 220.2 286.6 331.5

𝑔 = 100, the ADD in case of discarding partial packets is on average 113.5 while using Fly-PRAC

reduces it to 103.9. This also leads to a reduction in the number of required transmissions from

372.7 to 322.97 packets.

Moreover, results show that Fly-PRAC is more successful in reducing the ADD compared to S-

PRAC. For example, table 5.3 shows when BER= 10−5, 𝑤 = 2 and 𝑔 = 100 the ADD of Fly-PRAC

and S-PRAC are 106.9 and 156.7, respectively.

5.3.5 Recoverability and Overhead Comparison

Table 5.4 gives information about average recovered and transmitted packets until successful decoding

of a generation for Fly-PRAC and S-PRAC method. In comparison to S-PRAC, Fly-PRAC recovers

more packets and requires less transmission in a variety of scenarios. For instance, when 𝑔 = 100

and the payload size is 300 bytes, the Fly-PRAC with 𝑅 = 10 recovers 10 packets compared to

0.9 recovered packets in S-PRAC. Furthermore, Fly-PRAC requires an average of 105.9 packets for

successful recovery, whereas S-PRAC requires 112.3 packets. As a result, sending redundant packets

68

Table 5.4: The comparison of Fly-PRAC and S-PRAC, with segment size 4 and BER = 5e-5.

Method Generation R

Payload Size (bytes)

300 700

Total Recovered Total Recovered

Fly-PRAC

100

5 124.3 5.5 125 20.4

10 111.2 8.5 112.8 22.9

15 105.9 10 111.6 19.8

200

5 249.4 10.8 250.5 41

10 222.4 16.5 225.5 46.3

15 211.7 19.7 223 40

S-PRAC
100 - 112.3 0.9 131.7 1.6

200 - 224.4 1.3 264 1.5

at the proper time reduces the total number of packets. In particular, the overall transmission

gap between Fly-PRAC and S-PRAC grows from 12.09 packets for a 300-byte payload to 40.98

packets for a 700-byte payload. However, transmitting too many redundant packets causes more

overhead. For instance, for Fly-PRAC with a payload size of 300 bytes, the total number of required

transmissions for 𝑅 = 5 and 𝑅 = 10 are 124.3 and 105.9, respectively.

69

Chapter 6

Conclusion and Future work

Due to the faulty nature of wireless communications, errors are inevitable during transmission. As

a result, a considerable number of packets might partially corrupt. In general, partial packets are

discarded in network coding communications, which is not optimal and degrades communication

performance. In this thesis, we propose two partial packet recovery schemes for network coding to

increase reliability and enhance the quality of communication.

First, we proposed a PPR scheme for RLNC called F-PRNC. This scheme intends to reduce

decoding and recovery time. F-PRNC benefits from the algebraic consistency check to detect the

corrupted symbols that accelerate the decoder’s performance. Further, F-PRNC adds redundancy

symbols at the end of each coded packet. Once a partial packet is received, F-PRNC exploits

appended redundancy symbols to recover partial packets. In this study, we provided the analytical

results on the complexity of F-PRNC. We also carried out extensive simulations on its performance.

The simulations show that F-PRNC can improve goodput and reduce retransmission delays in very

70

noisy communication channels. The results demonstrate the superiority of F-PRNC over previously

proposed PPR schemes such as DAPRAC and S-PRAC under a variety of conditions.

Moreover, we proposed another PPR scheme called Fly-PRAC. Fly-PRAC uses algebraic consistency

between a subset of 𝑅 packets to estimate the corrupted locations of partial packets. For this

purpose, after transmitting 𝑅 − 1 packets, the encoder transmits a redundant one. Fly-PRAC

can now provide estimation and begin to recover partial packets earlier according to this improved

estimation technique. It also reduces the false-positive events during the estimation process. We

propose multiple versions of Fly-PRAC for RLNC, SNC, and relay nodes. Fly-PRAC is the first

PPR scheme for network coding that allows intermediate nodes to recover partial packets. Therefore,

the recovered packets can participate in the re-coding process, allowing communication to utilize

NC benefits fully. The simulation results illustrate that, in a poor channel condition, the proposed

method can boost the speed of the recovery process and also can recover more packets. These

features make it more suitable for larger generation sizes and bigger payload sizes. In sparse network

coding communication, we also evaluated the impact of the proposed method on partial decoding.

Simulations imply that Fly-PRAC can boost partial decoding by reducing the average decoding

delay.

Both proposed methods can improve in several aspects, and here I would like to suggest the

following future extensions to our work.

All proposed PPR methods for network coding, including F-PRNC and Fly-PRAC, assume that

the coefficient vector generators are either synchronized between the sender and receiver nodes or the

coefficient vectors are received without error if conveyed within packets. Further, PPR schemes also

71

assume that checksums in packets are also error-free. In other words, any error in the checksums or

coefficient vectors will interrupt the recovery process. An improved PPR scheme should recover and

handle errors of all parts of a packet, including associated coefficients and checksum. In addition,

the proposed methods are only considering unicast communications. Another improvement would

be assessing the performance of PPR schemes for multicast scenarios.

72

Bibliography

[1] J. Cabrera, G. Nguyen, D. E. Lucani, M. Pedersen, and F. H. P. Fitzek. Taking the trash back
in: Practical joint channel and network coding for improving IEEE 802.11 networks. In Eur.

Wireless 2017; 23th Eur. Wireless Conf., pages 1–5, May 2017.

[2] Nicole Todtenberg and Rolf Kraemer. A survey on bluetooth multi-hop networks. Ad Hoc

Networks, 93:101922, 2019.

[3] Drew Gislason. Zigbee wireless networking. Newnes, 2008.

[4] Kaveh Pahlavan and Prashant Krishnamurthy. Evolution and impact of wi-fi technology and
applications: a historical perspective. International Journal of Wireless Information Networks,
28(1):3–19, 2021.

[5] Kalvin Bahia and Anne Delaporte. The State of Mobile Internet Connectivity 2020. GSMA
Intelligence, 2020.

[6] Franck Muteba, Karim Djouani, and Thomas Olwal. A comparative survey study on lpwa iot
technologies: Design, considerations, challenges and solutions. Procedia Computer Science, 155:
636–641, 2019. The 16th International Conference on Mobile Systems and Pervasive Computing
(MobiSPC 2019).

[7] A Forouzan Behrouz and CF Sophia. Data communications and networking. Forouzan with

Sophia Chung Fegan, 2007.

[8] David Eckhardt and Peter Steenkiste. Measurement and analysis of the error characteristics of
an in-building wireless network. SIGCOMM Comput. Commun. Rev., 26(4):243–254, August
1996.

[9] Sheryl L Howard, Christian Schlegel, Kris Iniewski, and Kris Iniewski. Error control coding
in low-power wireless sensor networks: When is ecc energy-efficient? EURASIP Journal on

Wireless Communications and Networking, 2006:1–14, 2006.

[10] Z. Hajjarian Kashani. Power optimised channel coding in wireless sensor networks using low-
density parity-check codes. IET Communications, 1:1256–1262(6), December 2007.

[11] Rudolf Ahlswede, Ning Cai, S-YR Li, and Raymond W Yeung. Network information flow. IEEE
Trans. Inf. Theory, 46(4):1204–1216, July 2000.

73

[12] Majid Ghaderi, Don Towsley, and Jim Kurose. Network coding performance for reliable
multicast. In MILCOM 2007 - IEEE Military Communications Conference, pages 1–7, 2007.

[13] M. Ghaderi, D. Towsley, and J. Kurose. Reliability gain of network coding in lossy wireless
networks. In IEEE INFOCOM 2008 - The 27th Conference on Computer Communications,
pages 2171–2179, 2008.

[14] Riccardo Bassoli, Hugo Marques, Jonathan Rodriguez, Kenneth W Shum, and Rahim Tafazolli.
Network coding theory: A survey. IEEE Communications Surveys & Tutorials, 15(4):1950–1978,
2013.

[15] Peyman Pahlevani, Martin Hundebøll, Morten Pedersen, Daniel Lucani, Hassan Charaf,
Frank P Fitzek, Hamidreza Bagheri, and Marcos Katz. Novel concepts for device-to-device
communication using network coding. IEEE Communications Magazine, 52(4):32–39, 2014.

[16] Peyman Pahlevani, Achuthan Paramanathan, Martin Hundebøll, Janus Heide, Stephan A Rein,
and Frank HP Fitzek. Reliable communication in wireless meshed networks using network
coding. In Vehicular Technology Conference (VTC Fall), 2012 IEEE, pages 1–5. IEEE, 2012.

[17] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros. The benefits of coding over routing
in a randomized setting. In IEEE Int. Symp. Inf. Theory, 2003. Proceedings., page 442, June
2003.

[18] Parastoo Sadeghi, Ramtin Shams, and Danail Traskov. An optimal adaptive network coding
scheme for minimizing decoding delay in broadcast erasure channels. EURASIP Journal on

Wireless Communications and Networking, 2010:1–14, 2010.

[19] Janus Heide, Morten V Pedersen, Frank HP Fitzek, and Muriel Médard. On code parameters
and coding vector representation for practical rlnc. In Communications (ICC), 2011 IEEE

International Conference on, pages 1–5. IEEE, 2011.

[20] Danilo Silva, Weifei Zeng, and Frank R. Kschischang. Sparse network coding with overlapping
classes. In 2009 Workshop on Network Coding, Theory, and Applications, pages 74–79, 2009.

[21] Suzie Brown, Oliver Johnson, and Andrea Tassi. Reliability of broadcast communications under
sparse random linear network coding. IEEE Transactions on Vehicular Technology, 67(5):4677–
4682, 2018.

[22] Pablo Garrido, Daniel E Lucani, and Ramón Agüero. Markov chain model for the decoding
probability of sparse network coding. IEEE Transactions on Communications, 65(4):1675–1685,
2017.

[23] Juan A. Cabrera, Raphael Steppert, Frank Gabriel, and Frank H. P. Fitzek. Do not waste
the waste: Packetized rateless algebraic consistency for ieee 802.11 networks. In 2021 IEEE

Wireless Communications and Networking Conference (WCNC), pages 1–6, 2021.

74

[24] Jin Xie, Wei Hu, and Zhenghao Zhang. Revisiting partial packet recovery in 802.11 wireless
lans. In Proceedings of the 9th International Conference on Mobile Systems, Applications, and

Services, MobiSys ’11, page 281–292, New York, NY, USA, 2011. Association for Computing
Machinery.

[25] G. Angelopoulos, M. Médard, and A. P. Chandrakasan. Harnessing partial packets in wireless
networks: Throughput and energy benefits. IEEE Trans. Wireless Commun., 16(2):694–704,
Nov. 2017.

[26] H. K. Nazari, K. Ghassabi, P. Pahlevani, and D. E. Lucani. Improving the decoding speed of
packet recovery in network coding. IEEE Commun. Lett., 25(2):351–355, Feb. 2021.

[27] Kurniawan D Irianto, Juan A Cabrera, Giang T Nguyen, Hani Salah, and Frank HP Fitzek.
S-PRAC: Fast partial packet recovery with network coding in very noisy wireless channels. In
2019 Wireless Days (WD), pages 1–7, Manchester, United Kingdom, Apr. 2019.

[28] Suelen Laurindo, Ricardo Moraes, Carlos Montez, and Francisco Vasques. Combining network
coding and retransmission techniques to improve the communication reliability of wireless sensor
network. Information, 12(5), 2021. ISSN 2078-2489.

[29] Sang-Woon Jeon, Sang Won Choi, Juyeop Kim, and Won-Yong Shin. Cellular-aided device-to-
device communication: The benefit of physical layer network coding. IEEE Communications

Letters, 20(11):2324–2327, 2016.

[30] Sachin Katti, Shyamnath Gollakota, and Dina Katabi. Embracing wireless interference: Analog
network coding. SIGCOMM Comput. Commun. Rev., 37(4):397–408, August 2007. ISSN 0146-
4833.

[31] Pouya Ostovari, Jie Wu, and Abdallah Khreishah. Network Coding Techniques for Wireless

and Sensor Networks, pages 129–162. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[32] Tracey Ho, Muriel Médard, Ralf Koetter, David R Karger, Michelle Effros, Jun Shi, and
Ben Leong. A random linear network coding approach to multicast. IEEE Transactions on

Information Theory, 52(10):4413–4430, 2006.

[33] Prasan Kumar Sahoo, Sudhir Ranjan Pattanaik, and Shih-Lin Wu. Design and analysis of a low
latency deterministic network mac for wireless sensor networks. Sensors, 17(10), 2017. ISSN
1424-8220.

[34] L. Qi, Wenyu Sun, and Yiju Wang. Numerical multilinear algebra and its applications. Frontiers
of Mathematics in China, 2:501–526, 2007.

[35] A. Zarei, P. Pahlevani, and D. E. Lucani. An analytical model for sparse network codes: Field
size considerations. IEEE Commun. Lett., 24(4):729–733, Apr. 2020.

[36] P. Sindhu. Retransmission error control with memory. IEEE Trans. Commun., 25(5):473–479,
May 1977.

75

[37] Grace R. Woo, Pouya Kheradpour, Dawei Shen, and Dina Katabi. Beyond the bits: Cooperative
packet recovery using physical layer information. In Proc. 13th Ann. ACM Int. Conf. Mobile

Comput. and Netw., pages 147–158, Montréal, Québec, Canada, Sept. 2007.

[38] Kyle Jamieson and Hari Balakrishnan. Ppr: Partial packet recovery for wireless networks. In
Proc. 2007 Conf. Appl., Technol., Architectures, and Protocols for Comput. Commun., pages
409–420, Kyoto, Japan, Aug. 2007.

[39] Raghu K. Ganti, Praveen Jayachandran, Haiyun Luo, and Tarek F. Abdelzaher. Datalink
streaming in wireless sensor networks. In Proc. 4th Int. Conf. Embedded Networked Sensor

Syst., pages 209–222, Boulder, Colorado, USA, Oct. 2006.

[40] A. P. Iyer, G. Deshpande, E. Rozner, A. Bhartia, and Lili Qiu. Fast resilient jumbo frames in
wireless LANs. In 2009 17th Int. Workshop Qual. of Service, pages 1–9, Charleston, SC, USA,
July 2009.

[41] Kurniawan D. Irianto, Giang T. Nguyen, Hani Salah, and Frank H.P. Fitzek. Partial packet in
wireless networks: a review of error recovery approaches. IET Communications, 14(2):186–192,
2020.

[42] M. S. Mohammadi, Q. Zhang, and E. Dutkiewicz. Exploiting partial packets in random linear
codes using sparse error recovery. In 2015 IEEE Int. Conf. Commun. (ICC), pages 2577–2582,
London, UK, June 2015.

[43] M. S. Mohammadi, Q. Zhang, and E. Dutkiewicz. Reading damaged scripts: Partial packet
recovery based on compressive sensing for efficient random linear coded transmission. IEEE

Trans. Commun., 64(8):3296–3310, June 2016.

[44] Tracey Ho and Desmond Lun. Network coding: an introduction. Cambridge University Press,
2008.

[45] Sriram Pemmaraju and Steven Skiena. Computational Discrete Mathematics: Combinatorics

and Graph Theory with Mathematica. Cambridge University Press, 2003.

[46] S. Leung-Yan-Cheong, E. Barnes, and D. Friedman. On some properties of the undetected
error probability of linear codes (corresp.). IEEE Transactions on Information Theory, 25(1):
110–112, 1979.

[47] Morten V. Pedersen, Janus Heide, and Frank H. P. Fitzek. Kodo: An open and research
oriented network coding library. In Vicente Casares-Giner, Pietro Manzoni, and Ana Pont,
editors, Networking 2011 Workshops, pages 145–152, Berlin, Heidelberg, 2011.

[48] “Global ping statistics - wondernetwork". URL https://www.wondernetwork.com/pings.
Accessed on: Sept. 13, 2020.

76

https://www.wondernetwork.com/pings

	Introduction
	Reliable comunication in a noisy wireless channel
	Network Coding
	Linear Network Coding
	Packet Recovery for Linear Network Coding

	Problem statement
	Contribution
	Thesis Structure

	Background and Related Work
	Introduction
	Background
	Network Coding Implementations
	RLNC
	SNC

	Modeling a Noisy Channel

	Related works
	FEC and ARQ
	Spatial Diversity
	Partial Packet Recovery
	PPR-CS
	PRAC
	DAPRAC
	S-PRAC

	Conclusion

	Proposed methods
	Introduction
	F-PRNC
	Encoding
	Recovery & Decoding Process
	Limited recovery
	Algebraic consistency rule
	Hinted recovery

	Fly-PRAC
	Fly-PRAC For RLNC
	Encoding
	Recovery
	Error Estimation Step
	Error Correction Step

	Decoding

	Fly-PRAC for Relay nodes
	Fly-PRAC for Sparse network coding
	Encoding
	Recovery and Decoding

	Analysis
	Introduction
	F-PRNC
	Limited Recovery Phase
	Hinted Recovery Phase
	Complexity of RLNC and ACR

	Fly-PRAC
	False Positive in correction phase
	Impact of R on the recovery process

	Simulation Results
	Introduction
	F-PRNC
	Experiment Setup
	Comparison of F-PRNC with DAPRAC and S-PRAC

	Fly-PRAC
	Experiment Setups
	Impact of Generation and Payload size on Packet Recovery
	Impact of enabling recovery at intermediate nodes
	Comparison of packet recovery for SNC communication
	Recoverability and Overhead Comparison

	Conclusion and Future work
	Bibliography

